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Abstract

In longitudinal studies with clustered data, researchers are often interested in estimating

within-person effects—how changes over time within one variable relate to changes in an-

other. To properly isolate these effects, the multilevel linear modeling (MLM) literature has

long emphasized the need to disentangle within- and between-person effects, typically us-

ing disaggregation techniques such as person-mean centering. However, these methods have

been developed primarily for continuous predictors and outcomes and little attention has

been paid to their application with binary predictors or outcomes, despite the prevalence of

such variables in applied research. Moreover, the capacity of alternative estimation frame-

works, such as Generalized Estimating Equations (GEEs), to recover these effects remains

underexplored. This study addresses both gaps. First, we explain how within- and between-

person effects may be understood for binary predictors and outcomes using four generative

models. Second, we evaluate the performance of disaggregation methods across estimation

frameworks (multilevel models vs. GEEs) and predictor and outcome types (binary vs. con-

tinuous) in retrieving within-person and contextual effects. Our results indicate that both

Mundlak’s contextual and hybrid approaches generalize robustly across all multilevel spec-

ifications. Person-mean centering—often considered the gold standard—performs similarly

with continuous outcomes but is less effective with binary outcomes. GEEs implemented

with disaggregation methods are able to recover effects when outcomes are continuous, but

not when they are binary. We conclude with practical recommendations for model specifi-

cation and offer directions for future research.

Keywords: clustered longitudinal data, contextual effect, person-mean centering, gen-

eralized estimating equations, multilevel models
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From Multilevel Modeling to GEE: Revisiting the Within- and Between-Person

Debate with Binary Predictors and Outcomes

Across a wide range of disciplines, researchers analyze clustered longitudinal data

to investigate prospective—and potentially causal—relationships between variables. When

analyzing such data, psychological researchers commonly use the multilevel linear modeling

(MLM) framework (Bauer & Sterba, 2011). A fundamental concern within the MLM liter-

ature is that the relationship between a predictor and an outcome may differ across levels

of analysis (e.g., Enders & Tofighi, 2007; Kreft et al., 1995; Raudenbush & Bryk, 2002).

In the context of longitudinal data, this implies that relationships across time captured at

the within-person level of a model may differ from stable, between-person relationships as

captured at the between-person level of a model. This discrepancy, known as the contextual

effect, is particularly important because failing to account for it results in an “uninterpretable

blend” of within- and between-cluster relationships (Raudenbush & Bryk, 2002, p. 139). This

blending obscures the within-person effect, which is typically the primary target of inference.

The MLM literature offers several disaggregation methods that disentangle within-

person from between-person effects (Curran & Bauer, 2011). These include: (a) person-mean

centering of predictor variables; and (b) entering uncentered predictors alongside cluster

means as predictor of the random intercept (Bell & Jones, 2015; Kreft et al., 1995; Rau-

denbush & Bryk, 2002). However, the MLM literature has primarily focused on continuous

predictors, with limited guidance on how to disentangle effects when dealing with binary pre-

dictors. As a result, applied researchers may default to intuition or omit centering altogether

when analyzing categorical predictors (Yaremych et al., 2023). This issue is exacerbated in

generalized linear mixed modeling (GLMM)1 with binary outcomes, where the non-linearity

between predictor and outcome further complicates interpretation (Austin & Merlo, 2017;

Bolger & Laurenceau, 2013). This gap in methodological guidance is concerning since binary

1 We refer to GLMM as the general estimation framework that includes MLMs for continuous outcomes and

multilevel logistic models for binary outcomes.
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variables are ubiquitous within the social sciences and researchers may be left unsure of how

to specify their models correctly.

A well established alternative for analyzing clustered data is the Generalized Esti-

mating Equations (GEEs) framework. It was originally developed in the biostatistics litera-

ture to accommodate longitudinal designs with non-normal outcomes (Liang & Zeger, 1986;

Zeger & Liang, 1986). In biomedical studies, GEEs is widely used—and often favored over

GLMMs—for modeling binary outcomes (cf. Diggle et al., 2002). An important strength

of GEEs is its reliance on fewer unverifiable assumptions compared to GLMM (Hubbard

et al., 2010; McNeish et al., 2017). As GEEs gains traction in psychology (e.g., McNeish

et al., 2017; Muth et al., 2016), researchers familiar with MLM may question how GEEs

compares to GLMMs and specifically whether the debate about separating within- from

between-person effects using disaggregation method also applies when a GEEs approach is

taken. While some prior work has addressed how to handle binary predictors in MLMs

(Enders & Tofighi, 2007; Raudenbush & Bryk, 2002; Yaremych et al., 2023) or binary out-

comes in GLMMs (Bolger & Laurenceau, 2013; Schunck & Perales, 2017), and others have

compared estimation frameworks across disciplines (Ballinger, 2004; McNeish et al., 2017;

Muth et al., 2016; Neuhaus et al., 1991; Yan et al., 2013), no study to date has examined

how different disaggregation methods perform and compare across estimation frameworks

and variable types.

This paper seeks to address this gap by offering a systematic comparison of disaggre-

gation methods across estimation frameworks and data types. Specifically, the goal of this

paper is twofold. First, we aim to clarify how we should think about within and between

effects with a binary predictor and/or outcome. Second, we study the degree to which we

can correctly estimate these effects with GLMM and GEEs implementations. This article

is structured as follows. We outline four data generating models to conceptualize within-

person and contextual effects across different measurement scales, supported by a running

example. Next, we discuss estimation frameworks and methods for including predictors. We
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then present a simulation study in which we assess estimation performance across variations

in (a) estimation strategy (GLMM vs. GEEs), (b) disaggregation methods, (c) measure-

ment levels (binary vs. continuous), and (d) sample size—number of clusters and number

of measurements per cluster. We evaluate when common modeling choices may lead to bi-

ased estimates and provide practical guidance for applied researchers working with clustered

binary data. We conclude with a summary of key findings, limitations, and directions for

future research.

Data Generating Models

In this section, we describe the four data generating models (DGMs) used to in-

vestigate contextual as well as within- and between-person effects in the context of binary

predictors and/or outcomes. These models also form the basis of the simulation study. The

DGMs differ in the measurement level of the predictor X and the outcome Y , and are

visualized in Figure 1. In all four DGMs, we consider a single time-varying predictor X,

which reflects both stable between-person differences and within-person variation over time.

Similarly, Y is a time-varying outcome that exhibits both between-person differences and

within-person fluctuations. Y is affected by X at both levels. For a given individual, a time-

point-specific increase in X leads to a change in Y , which we refer to as the within-person

effect. Additionally, individuals with higher person-level averages of X obtain systematically

greater changes in Y than predicted by the within-person effect alone, suggesting a contex-

tual spill-over effect.
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Figure 1

Path diagrams of Generative Models with Within-Person (β1) and Contextual Effect (γ01)
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(d) Binary X and Y

Note. Path diagrams of the four data-generating models, varying by predictor type X (columns) and

outcome type Y (rows), each either continuous or binary. In all models, the outcome is regressed on

the predictor, and the person-level predictor mean µX predicts the outcome intercept β0, yielding

a within-person slope β1 and a contextual effect γ01. Circles represent latent variables, squares

observed variables. Solid arrows denote linear relations; dotted arrows indicate logit transformations

(plogis in R); dashed arrows indicate Bernoulli sampling with probability π (rbinom in R).
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To illustrate these DGMs, we use a running example grounded in prior empirical

work on the effect of mindfulness (Xit) on anger (Yit), where X and Y vary over individuals

i and time points t. Numerous studies have shown that, across individuals, those with

higher overall mindfulness report lower overall levels of anger (Baer & Sauer, 2011; Borders

et al., 2010; Brown & Ryan, 2003; Eisenlohr-Moul et al., 2016; Kashdan et al., 2016).

Mindfulness also shows substantial within-person variability over time (Brown & Ryan, 2003;

Kiken et al., 2015), and evidence suggests that on days when individuals report higher-than-

usual mindfulness, they also report lower levels of state anger (Eisenlohr-Moul et al., 2016).

Hence, both within- and between-person associations are negative, though effect sizes depend

on the specific operationalization (Eisenlohr-Moul et al., 2016). Moreover, between-person

associations tend to be larger, implying that a one-unit difference in average mindfulness

between individuals is associated with a greater difference in anger-related outcomes than a

one-unit increase in moment-to-moment fluctuations.

DGM 1: Continuous Predictor and Outcome

To illustrate the DGM for a continuous predictor and outcome, we consider the case

of how mindfulness relates to daily experiences of anger (see Figure 1a). Each individual

possesses a stable level of trait mindfulness, denoted as a person-specific latent mean µX,i.

This latent trait is assumed to vary across individuals according to a normal distribution

µX,i ∼ N (0, σ2
X,b), where σ2

X,b reflects the between-person variance in mindfulness. The

observed X for individual i at occasion t, denoted Xit, is a combination of an individual’s

stable trait level and a momentary deviation, and can thus be expressed as:

Xit = µX,i + Xw,it. (1)

Here, Xw,it represents the within-person score in mindfulness, capturing occasion-specific

fluctuations around the person’s trait level. In Figure 1a, the within-person score is obtained

as Xw,it = Xit − µX,i. Xw,it varies over time according to a normal distribution Xw,it ∼

N (0, σ2
X,w), where σ2

X,w reflects within-person variance in mindfulness. Daily anger, denoted
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Yit, is given by

Yit = β0i + β1Xit + eit, (2)

where β0i is an individual-specific intercept capturing average levels of anger, and eit ∼

N (0, σ2
e) is a person- and time-specific residual with variance σ2

e . The individual-specific

intercept β0i is a function of a person’s average mindfulness (µX,i) through

β0i = γ00 + γ01µX,i + u0i, (3)

where γ00 is the grand mean of anger (given that E [µX,i] = 0), and γ01 is the contextual

effect of trait mindfulness on anger. The person-specific residual u0i ∼ N (0, σ2
u) is normally

distributed with variance σ2
u, and represents residual heterogeneity in average anger between

individuals after accounting for average levels of mindfulness. By substituting Equation 3

into Equation 2, we obtain the combined expression:

Yit = γ00 + γ01µX,i + u0i + β1Xit + eit. (4)

In this DGM, there are two ways in which mindfulness (X) influences anger (Y ). To make

this explicit, we substitute Equation 1 into Equation 4, yielding:

Yit = γ00 + (γ01 + β1)µX,i + u0i + β1Xw,it + eit. (5)

First, occasion-specific changes in mindfulness (Xw,it) affect anger (Yit) through the coeffi-

cient β1, which represents the within-person effect: how anger changes on a given occasion

when an individual is more or less mindful than usual. Between-person differences in average

mindfulness (µX,i) also influence anger, both through the term β1 and via the contextual

effect γ01. The between-person effect—the impact of a person’s typical mindfulness level

(µX,i) on average anger level—is given by βb = γ01 + β1 (Mundlak, 1978).2 If there is no

contextual effect (γ01 = 0), the within- and between-person effects are equal and captured by

β1. Conversely, the presence of a contextual effect (γ01 ̸= 0) implies that the between-person

2 This equivalence does not hold in the presence of random slopes; see Snijders and Bosker (2011).
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effect differs from the within-person effect. A positive γ01 indicates that individuals who are

more mindful on average experience more anger than would be expected based only on the

within-person relationship. A negative γ01 implies that individuals who are more mindful

on average experience less anger than would be expected based solely on the within-person

relationship.

Empirical work has found that the between-person effect tends to be larger in mag-

nitude than the within-person effect (βb > β1; Eisenlohr-Moul et al., 2016). As both effects

are negative, this implies the presence of a negative contextual effect. To reflect this, we

employ the following parameter values: γ00 = 4.5, γ01 = −0.5, β1 = −0.4, which implies

βb = −0.5 − 0.4 = −0.9. As visualized in Figure 2a, these parameters yield a stronger

negative association at the between-person level than at the within-person level. We assume

that the within-person effect is identical for both individuals and that these individuals vary

only in their average levels of mindfulness and anger. Specifically, the individual depicted in

orange has a distribution centered around a higher trait level of mindfulness (µX,i = 4) than

the individual depicted in red (µX,i = 2). Due to the negative between-person effect of X

on Y , it follows that the individual in orange also has lower overall anger levels.
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Figure 2

Illustration of Within- and Between-Person Effects in Generative Models with β1 = −0.4
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(b) Binary X and Continuous Y
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(c) Continuous X and Binary Y
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(d) Binary X and Y

Note. Within-person effects (β1) and between-person effects (βb) are shown for data-generating

mechanisms varying by predictor type X (columns) and outcome type Y (rows), each either con-

tinuous or binary. For continuous outcomes, relationships are linear; for binary outcomes, the

Y-axis reflects the probability of Y = 1, and relationships follow a logistic curve. The solid black

line denotes the between-person effect; colored lines represent within-person effects for two indi-

viduals. Circles are hypothetical observations; diamonds mark where each within-person slope

intersects the between-person slope. Thin dotted lines indicate each person’s mean on X and Y .



WITHIN-PERSON EFFECTS AND BINARY VARIABLES 11

DGM 2: Binary Predictor and Continuous Outcome

To illustrate the DGM for a binary predictor and continuous outcome, we consider

the case where daily engagement in a mindfulness practice (e.g., meditation), coded as 1 if

practiced and 0 otherwise, influences experiences of anger (see Figure 1b). Each individual

is characterized by a latent propensity to engage in mindfulness on a given day, denoted

Zi, which varies across individuals according to a normal distribution Zi ∼ N (0, σ2
Z). This

continuous latent trait is transformed via a logistic function to yield the individual-specific

probability πX,i ∈ (0, 1)—taking on values strictly between 0 and 1—of engaging in mind-

fulness:

πX,i = eZi

1 + eZi
. (6)

The observed mindfulness practice score Xit ∈ {0, 1} for individual i at occasion t is a binary

variable determined by the underlying probability πX,i and a Bernoulli sampling process:

Xit ∼ Bernoulli(πX,i). In this way, each person’s binary predictor values vary across time

due to probabilistic sampling, and the extent of within-person variability is a function of

their underlying propensity πX,i. Individuals with extreme trait probabilities (close to 0 or

1) will show little within-person variation, whereas those with moderate probabilities will

exhibit more fluctuation.

Anger on day t for person i, denoted Yit, is determined by the person’s observed

mindfulness practice Xit, a person-specific intercept β0i, and a residual eit (see Equation 2).

The random intercept β0i is a function of πX,i via

β0i = γ00 + γ01πX,i + u0i, (7)

where γ00 represents the extrapolated anger level for a hypothetical individual with an ex-

treme aversion to mindfulness practice (with πX,i = 0), γ01 is the contextual effect of aver-

age mindfulness engagement, and u0i ∼ N (0, σ2
u) captures person-level heterogeneity unex-

plained by πX,i. Substituting Equation 7 into Equation 2 yields the composite model:

Yit = γ00 + γ01πX,i + u0i + β1Xit + eit. (8)
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This DGM captures two distinct effects of mindfulness practice (X) on anger (Y ). Within-

person fluctuations in mindfulness engagement influence anger (Yit) through β1, reflecting

how anger changes on days with versus without mindfulness practice. Between-person differ-

ences in the general tendency to practice mindfulness (πX,i) influence anger both through β1

and via the contextual effect γ01. Accordingly, the contextual effect γ01 captures whether in-

dividuals who typically engage more in mindfulness experience systematically different anger

levels than expected based on their day-to-day engagement alone.

Let us consider a plausible generative structure, where γ00 = 4.5, γ01 = −3.1, β1 =

−0.4, resulting in a between-person effect of βb = −3.5. This pattern, visualized in Figure 2b,

suggests that individuals who engage in mindfulness more frequently benefit from reduced

anger than expected based on their day-to-day practice alone. The two individuals vary

only in their propensity to engage in mindfulness and average anger. The person indicated

in orange has a higher overall probability of practicing mindfulness (πX,i = 2
3) than the

person indicated in red (πX,i = 1
3). Given the negative between-level effect of X on Y , the

person in orange also has lower overall anger than the person in red.

DGM 3: Continuous Predictor and Binary Outcome

To illustrate the DGM for a continuous predictor and a binary outcome, we consider

how daily levels of mindfulness relate to the probability of experiencing an anger episode,

coded as 1 if an anger episode occurred and 0 otherwise (see Figure 1c). The continuous

predictor Xit is generated as described in DGM 1 (see Equation 1). The binary outcome

Yit ∈ {0, 1} reflects whether an anger episode occurred for person i on day t. The log-odds

of an anger episode, P (Yit = 1), is determined by a linear function of observed mindfulness

and a person-specific intercept:

logit [P (Yit = 1)] = β0i + β1Xit. (9)
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The expression for the random intercept β0i is the same as in DGM 1 (see Equation 3).

Substituting Equation 3 into Equation 9 yields the combined expression:

logit [P (Yit = 1)] = γ00 + γ01µX,i + u0i + β1Xit. (10)

The use of a logistic link function, unlike the linear function in DGM 1 and 2, entails that

the coefficients are expressed on the log-odds scale. The within-person effect β1 reflects how

day-to-day deviations in mindfulness relate to fluctuations in the log-odds of experiencing

anger. The contextual effect γ01 indicates whether individuals who are more inclined to

practice mindfulness on average differ in their overall log-odds of anger, over and above the

within-person association.

Let us consider a generative structure where γ00 = 3, γ01 = −0.5, and β1 = −0.4, so

that the between-person effect is βb = −0.9. This pattern, visualized in Figure 2c, reflects

that individuals with higher average mindfulness are less likely to experience anger episodes,

beyond what is expected from daily fluctuations alone, holding constant u0i. While the

within-person effect is of the same size as in DGMs 1 and 2, the curves are now logistic

rather than linear. The two persons differ only in their average mindfulness levels and

propensity to experience anger episodes. Specifically, the person shown in orange has a

distribution centered around a higher trait level of mindfulness (µX,i = 4) than the person

shown in red (µX,i = 2). Due to the negative between-person effect of X on Y , it follows that

the person in orange also has a lower overall probability of experiencing an anger episode.

To clarify the interpretation of coefficients, we convert the log-odds to probabilities

using the inverse logit transformation. We begin by substituting the parameter values into

Equation 10:

logit [P (Yit = 1)] = 3 − 0.5µX,i − 0.4Xit + u0i.

We first consider the within-person effect by examining a change in Xit while µX,i remains

constant. Suppose Clara (red color in Figure 2c) has an average mindfulness score of µX,i = 2,

and on a given day scores Xit = 2 (i.e., at her mean). In interpreting model coefficients, we



WITHIN-PERSON EFFECTS AND BINARY VARIABLES 14

must evaluate the random effect u0i at some fixed value; setting it to zero is conventional, as

it corresponds to the average individual in terms of their unexplained baseline risk. Thus,

suppose Clara has u0i = 0, indicating no residual deviation in her overall propensity to

experience anger beyond what is explained by her average mindfulness. In that case, her

log-odds of experiencing an anger episode are:

logit [P (Yit = 1)] = 3 − 0.5 · 2 − 0.4 · 2 = 1.2,

which can be converted to the probability of an anger episode using the inverse logit trans-

formation:

P (Yit = 1) = e1.2

1 + e1.2 ≈ 0.77.

Now suppose Clara scores one point above her average (i.e., Xit = 3). Then:

logit [P (Yit = 1)] = 1.2 − 0.4 = 0.8,

P (Yit = 1) = e0.8

1 + e0.8 ≈ 0.69.

Thus, a one-unit increase in mindfulness relative to her usual level decreases the probability

of an anger episode from 77% to 69%, illustrating the within-person effect.

Next, we examine the between-person effect by considering a change in µX,i while

holding Xw,it constant. Consider Clara (µX,i = 2) and Maya (µX,i = 4; orange color in

Figure 2c), both at their respective means (Xit = µX,i). Supposing Maya has u0i = 0, her

log-odds of an anger episode are:

logit [P (Yit = 1)] = 3 − 0.5 · 4 − 0.4 · 4 = −0.6,

P (Yit = 1) = e−0.6

1 + e−0.6 ≈ 0.35.

Thus, given that u0i = 0, Maya’s higher higher typical mindfulness results in a much lower

probability of experiencing anger than Clara (35% vs. 77%), illustrating the between-person

effect.
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DGM 4: Binary Predictor and Outcome

To illustrate the DGM for a binary predictor and a binary outcome, we consider how

engaging in a mindfulness practice (1 = yes, 0 = no) relates to the probability of experiencing

an anger episode (1 = yes, 0 = no) on the same day (see Figure 1d). The predictor Xit and

the person-specific probability πX,i are generated as described in DGM 2 (see Equation 6).

The probability of an anger episode, P (Yit = 1), is determined by a logistic func-

tion of a person’s observed mindfulness practice Xit and a person-specific intercept β0i (see

Equation 9). The expression for the random intercept β0i is the same as in DGM 2 (see

Equation 7). By plugging Equation 7 into Equation 9, the composite model becomes:

logit [P (Yit = 1)] = γ00 + γ01πX,i + u0i + β1Xit. (11)

As in DGM 3, coefficients are interpreted on the log-odds scale. The within-person effect

captured by β1 reflects the average change in the log-odds of experiencing anger on days

with versus without mindfulness practice. The contextual effect γ01 captures the association

between individuals’ average engagement in mindfulness practice and the log-odds of expe-

riencing anger, beyond daily fluctuations.

For a substantive generative structure, we consider γ00 = 0.5, γ01 = −2.1, and β1 =

−0.4, so that βb = −2.5. As shown in Figure 2d, this implies that individuals who tend

to practice mindfulness more frequently are less likely to experience anger episodes, beyond

what is expected from daily fluctuations alone. As in DGM 3, we have a logistic curve. The

two persons differ only in their general tendency to practice mindfulness and propensity to

experience anger episodes. Specifically, the person shown in orange has a greater overall

probability of practicing mindfulness (πX,i = 2
3) than the person shown in red (πX,i = 1

3).

Due to the negative between-person effect of X on Y , it follows that the person in orange

also has a lower overall probability of experiencing an anger episode.
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Estimation Frameworks

To analyze the hierarchical longitudinal data generated by the specified DGMs, we

consider two primary estimation frameworks: GLMMs and GEEs. Within the GLMM frame-

work, we employ a standard MLM for continuous outcomes and a multilevel logistic model

for binary outcomes. For the GEEs framework, we consider three commonly used implemen-

tations, which will be described in more detail later.

For the specification of the predictor in each of these estimation strategies, we employ

one method known to yield an uninterpretable blend and three methods known to disentangle

within- from between-person effects in the context of the MLM (Curran & Bauer, 2011).

While these methods are well established for MLMs with continuous predictors, it is less

clear how they apply to MLMs with binary predictors, to multilevel logistic models, and

to GEEs. Accordingly, we first discuss these methods within an MLM with a continuous

predictor applied to data from DGM 1, providing a clear reference point. We then extend

this discussion to binary predictors applied to data of DGM 2. Next, we introduce the

multilevel logistic model used to analyze data from DGM 3 and DGM 4, and outline how

the implementation of the four disaggregation methods differs in this context. Finally, we

describe how these methods are adapted when applied within the GEEs framework.

Generalized Linear Mixed Model

The GLMM extends the Generalized Linear Model (GLM) to accommodate hierar-

chical or clustered data structures (Breslow & Clayton, 1993; Hoffman, 2015; Stroup, 2012).

Like the GLM, the GLMM allows the analyst to specify an appropriate distribution for the

outcome variable (e.g., normal, binomial, Poisson) and a link function that defines the rela-

tionship between the linear predictor and the expected outcome. However, unlike the GLM,

which assumes independence of observations, the GLMM explicitly accounts for dependence

among observations within clusters—such as repeated measures within individuals—by in-

corporating random effects.

This estimation framework generalizes the MLM by permitting non-normal outcomes
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and non-identity link functions, thereby broadening its applicability to a wide range of data

types. In this paper, we focus on two widely used instantiations of the GLMM: (1) the MLM

which is a special case of the GLMM with a normally distributed outcome and an identity

link function and (2) the multilevel logistic model which is a GLMM with a binary outcome,

modeled using a binomial distribution and a logit link function.

Multilevel Linear Model

In MLM, it is well established that when using continuous, time-varying predictors,

researchers interested in within-person effects must disentangle these from between-person

effects. This distinction is critical because a model that does not explicitly separate these

sources of variation will produce a conflated estimate that mixes the two, impairing inter-

pretability and potentially leading to incorrect conclusions (e.g., Enders & Tofighi, 2007;

Kreft et al., 1995; Raudenbush & Bryk, 2002).

If the within- and between-person associations are identical—or there is no between-

person variability in X—there is no conflation and bias is absent. However, in typical

psychological research, one cannot assume that contextual effects are absent as level-specific

effects can differ drastically (Curran & Bauer, 2011; Robinson, 1950). In fact, detecting and

modeling such contextual effects is often one of the key motivations for applying MLMs. In

the context of the MLM with a continuous predictor, we review four approaches to specifying

the predictor variable. We begin with a method that conflates within- and between-person

effects, followed by three methods designed to isolate the within-person component.

Uncentered (UC) Method. We fit the following simple two-level model to data

generated by DGM 1 with a time-varying continuous predictor Xit and a random intercept:

Yit = β0i + β∗
1Xit + eit, (12)

β0i = γ00 + u0i. (13)

Substituting the between-person equation into the within-level model yields:

Yit = γ00 + u0i + β∗
1Xit + eit. (14)
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In this formulation, the estimate of β∗
1 reflects a blend of the within- and between-person

associations. The degree to which each component contributes to the estimate depends on

the number of time points per individual (T ) and the amount of variability at each level

(Mundlak, 1978; Neuhaus & Kalbfleisch, 1998; Raudenbush & Bryk, 2002). As T increases,

the estimate tends to be more influenced by the within-person effect, but the conflation

remains unless explicitly modeled.

The source of this conflation can be understood by considering a causal path diagram

(see Figure 1a), where the latent mean of the predictor µX , serves as a common cause of

both Xit and Yit (via its influence on the random intercept β0i). In other words, µX acts

as a confounder in the relationship between Xit and Yit (e.g., Berlin et al., 1999). This

confounding disappears under two special cases: (1) when there is no contextual effect (i.e.,

the path from µX to β0 is zero), or (2) when there is no between-person variation in µX (i.e.,

all individuals have the same latent mean on the predictor). Outside of these conditions,

failing to account for µX results in biased estimation of the within-person effect.

Centering Within Clusters (CWC). One solution is centering the predictor X

within clusters, using the sample mean X̄i for person i and the within-person centered

predictor (Xit − X̄i). This method ensures that the within-person slope is not confounded

by between-person differences (e.g., Hoffman, 2015; Kreft et al., 1995; Raudenbush & Bryk,

2002). The model is then specified as:

Yit = β0i + βw(Xit − X̄i) + eit, (15)

β0i = γ00 + u0i. (16)

Substituting the second equation into the first gives:

Yit = γ00 + u0i + βw(Xit − X̄i) + eit. (17)

Since (Xit − X̄i) contains no between-person variance, βw estimates the within-person slope.

The Hybrid (HB) Method. The Hybrid method extends the CWC approach by

including the cluster mean X̄i as a predictor of the person-specific intercept, thereby esti-
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mating the between-person slope βb:

β0i = γ00 + βbX̄i + u0i. (18)

The full model then becomes:

Yit = γ00 + βbX̄i + u0i + βw(Xit − X̄i) + eit. (19)

Mundlak’s Contextual (MuCo) Method. An alternative approach, known as

Mundlak’s model (Mundlak, 1978), closely aligns with the structure of the DGMs but relies

on estimating µX,i with the observed person-level mean X̄i. This approach retains the raw

predictor Xit in the within-person equation while including X̄i in the expression of the

intercept:

Yit = β0i + β1Xit + eit, (20)

β0i = γ00 + γ01X̄i + u0i. (21)

Substituting the second equation into the first gives:

Yit = γ00 + γ01X̄i + u0i + βwXit + eit. (22)

At first glance, it may seem unintuitive that the regression coefficient for the raw, uncentered

time-varying predictor Xit in a model that includes the person-mean X̄i represents the within-

person effect. However, this result follows from the statistical relationship between Xit and

X̄i, which are inherently correlated (cf. Hoffman, 2015). When both terms are included

in the model, their shared variance in predicting the outcome is partialled out, and each

coefficient reflects its unique contribution to the prediction. Specifically, the coefficient for

Xit captures the within-person effect β1 and the coefficient for X̄i, in turn, captures the

contextual effect γ01. Given the absence of random slope and no interactions between Xit

and X̄i, the between-person effect is given by βb = γ01 + β1 (Raudenbush & Bryk, 2002).
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Application of Disaggregation Methods to Binary Predictors. Although bi-

nary predictors differ substantively from continuous variables, the statistical principles un-

derlying their treatment in MLMs are analogous. As shown by Enders and Tofighi (2007),

the algebra and logic of centering does not require us to distinguish between continuous

and categorical predictors. Consequently, the same four disaggregation methods used for

continuous predictors can be applied to a binary predictor generated from DGM 2 without

modification. However, the application of methods has distinct interpretational implications

when involving binary compared to continuous predictors as discussed in DGM 3 and 4.

Additionally, modeling binary predictors introduces practical challenges due to their

bounded and discrete nature. When many individuals have a person-mean X̄i (i.e., the

proportion of time points with Xit = 1) close to 0 or 1, within-person variability is limited,

leading to unstable estimates of the within-person effect. Between-person predictors such as

X̄i are further constrained to at most T +1 discrete values, resulting in truncated distributions

that can attenuate correlations and bias contextual effects (Asparouhov & Muthén, 2019).

For instance, with T = 5, X̄i can only take values like 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. When

between-person variability is low, the effective range of X̄i is restricted further. Moreover,

since within-person variance Var(Xit) = X̄i(1−X̄i) is a deterministic function of the between-

person mean, the assumption of independence between levels is violated, potentially biasing

both within- and between-person estimates (Asparouhov & Muthén, 2019).

Multilevel Logistic Model

When the outcome variable is binary (e.g., experiencing an anger episode), a linear

model is no longer appropriate due to the bounded nature of probabilities (between 0 and

1). To analyze data structures—such as those generated in DGM 3 and 4—we employ the

multilevel logistic model, a specific form of the GLMM using a binomial distribution and a

logit link function (Anderson & Aitkin, 1985; Stiratelli et al., 1984). In logistic models, the
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linear predictor maps onto the probability of a binary event via the logit function:

logit [P (Yit = 1)] = log
(

P (Yit = 1)
1 − P (Yit = 1)

)
,

which transforms probabilities P (Yit = 1) ∈ (0, 1) onto the unbounded log-odds scale

(−∞, ∞) . As a consequence, the parameters and partition of variance do not have the

intuitive interpretation familiar from linear models (Merlo et al., 2006). Fixed effects de-

scribe changes in log-odds rather than in the outcome variable itself. For interpretability,

log-odds can be converted back into probabilities using the inverse logit transformation as

shown in DGM 3.

To explain how disaggregation methods apply to the multilevel logistic model, we

revisit the four methods introduced in the linear case and illustrate them using a continuous

predictor (DGM 3). The same logic generalizes to the binary predictor case (DGM 4).

Uncentered (UC) Method. We begin with a model including the raw predictor:

logit [P (Yit = 1)] = γ00 + u0i + β∗
1Xit. (23)

Here, β∗
1 reflects a conflated estimate combining within- and between-person components.

Centering Within Clusters (CWC). To isolate the within-person effect, we cen-

ter the predictor around the individual’s mean:

logit [P (Yit = 1)] = γ00 + u0i + βw(Xit − X̄i). (24)

Now, βw captures the effect of deviations from a person’s own average.

The Hybrid (HB) Method. To also obtain an estimate of the between-person

effect, we extend the CWC method to include the cluster mean:

logit [P (Yit = 1)] = γ00 + βbX̄i + u0i + βw(Xit − X̄i). (25)

This formulation allows βw to represent the within-person effect and βb the between-person

effect—how typical levels of the predictor relate to overall likelihood of the outcome.
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Mundlak’s Contextual (MuCo) Method. An alternative formulation includes

both the raw predictor and its person-mean:

logit [P (Yit = 1)] = γ00 + γ01X̄i + u0i + β1Xit. (26)

As in the linear case, this is algebraically equivalent to the hybrid model, since the logit does

not alter the underlying structure of the model and relationships. Thus, the between-person

effect is recovered as βb = γ01 + β1.

Generalized Estimating Equations

GEEs were introduced by Liang and Zeger (1986) as an extension of GLMs for analyz-

ing correlated, non-normally distributed outcomes—most notably, longitudinal and clustered

data. In this study, we apply GEEs with an identity link for continuous outcomes (DGMs

1 and 2) and a logit link for binary outcomes (DGMs 3 and 4). Unlike GLMMs, the most

common GEEs approaches do not include random effects. Instead, they account for within-

cluster correlation through a so-called working correlation structure. Since GEEs do not

model random effects, they make fewer unverifiable assumptions, which can be beneficial in

applied settings (Hubbard et al., 2010; McNeish et al., 2017).

Marginal versus Conditional Inference. In the biomedical literature, GEEs are

typically described as marginal models, whereas GLMMs are referred to as conditional mod-

els (e.g., Diggle et al., 2002). The central distinction lies in how the standard interpretation

of regression coefficients—holding all other variables constant—is applied: in GEEs, this

applies only to observed predictors, rendering estimates marginal with respect to the ran-

dom intercept; in GLMMs, it also includes the random effects (e.g., u0i), yielding estimates

conditional on them. Marginal models achieve this by integrating over the distribution of

the random effects, effectively averaging out subject-specific deviations.

Crucially, under the identity (linear) link, marginalization over the random effects

yields the same fixed-effect slopes in GEEs as in GLMMs—that is, marginal and conditional

models produce equivalent estimates. However, this equivalence breaks down for nonlinear
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links such as the logistic (Neuhaus et al., 1991).3 Accordingly, GEEs with logit link (like

standard GLMs) estimate population-averaged effects (Diggle et al., 2002): the expected

log-odds change in the mean outcome for a one-unit increase in a predictor, averaged across

the population, holding other observed variables constant. In contrast, GLMMs with a logit

link yield conditional-on-the-random-effect estimates: the expected log-odds change in the

outcome for a one-unit increase in a predictor, holding both observed predictors and random

effects (in this case u0i) constant. For a GLMM with random intercept, it is conventional to

set the random intercept residual to zero (u0i = 0; see DGM 3), reflecting ‘person-specific’

inference for an average individual in terms of their unexplained baseline propensity for the

outcome.

Importantly, whether a marginal or conditional interpretation is preferable depends

on the scientific aim of the study (Diggle et al., 2002; Neuhaus et al., 1991). Consider the

example of a longitudinal study examining the effect of mindfulness on the occurrence of

anger episodes (a binary outcome). A marginal question suitable for GEEs might be: “How

does practicing mindfulness affect the overall likelihood of experiencing anger episodes in the

general population?” Here, the focus is on population-average effects, which are suitable for

informing public health interventions. A conditional question suitable for GLMM might be:

“For a given individual, how does their likelihood of experiencing an anger episode change

following an increase in mindfulness?” Here, the focus is on understanding ‘person-specific’

within-person processes.

Working Correlation Structures and Computational Considerations. Re-

gardless of the type of outcome variable, GEEs account for within-cluster correlation through

a user-specified working correlation matrix R, which encodes the expected correlation pat-

tern among repeated measurements Yit within the same cluster i. Common choices include

3 An interactive RShiny app illustrating the relationship between marginal and conditional effects in

multilevel logistic models is available at: wardeiling.shinyapps.io/GLMM_population-averaged-and-person-

specific-interpretations.

https://wardeiling.shinyapps.io/GLMM_population-averaged-and-person-specific-interpretations/
https://wardeiling.shinyapps.io/GLMM_population-averaged-and-person-specific-interpretations/
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the independence, exchangeable, and first-order autoregressive (AR(1)) structures. To illus-

trate these three structures, let us consider a dataset with five time points, resulting in a 5×5

working correlation matrix, where ρ denotes the correlation between repeated observations:

Rindep =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, Rexch =



1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1


, RAR(1) =



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


.

The independence structure Rindep assumes no within-cluster correlation and is often

used as a baseline. The exchangeable (or compound symmetric) structure Rexch
4 assumes a

constant correlation between all pairs of measurements within a cluster. The AR(1) structure

RAR(1) assumes that correlations decay exponentially with increasing time lag, which is often

appropriate for regularly spaced longitudinal data. While correctly specifying the working

correlation can improve efficiency, GEEs estimates tend to remain consistent even under

misspecification of this matrix (Ballinger, 2004; Zeger et al., 1988).

The simplicity of GEE estimation has notable advantages, but also presents trade-offs

when compared to GLMMs. It is generally less computationally intensive, particularly with

simpler working correlation structures. However, convergence criteria are less straightforward

(see Hardin & Hilbe, 2012, p. 92), and model comparison is more complex. For an accessible

introduction to the computational and methodological aspects of GEEs, including iterative

estimation and model selection, see McNeish et al. (2017) and Ballinger (2004).

Application of Disaggregation Methods to GEEs. Although GEEs are widely

used for analyzing clustered longitudinal data, the application of disaggregation methods to

separate within- and between-person effects has received little attention in this framework.

An exception is the study by Begg and Parides (2003), who applied several disaggregation

4 In linear models, an exchangeable correlation structure in GEE is mathematically equivalent to including

a random intercept in a multilevel model (e.g., Gardiner et al., 2009; Koper & Manseau, 2009).
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methods (including UC, CWC, HB, MuCo) within the GEE framework using an exchange-

able working correlation structure. They found that, in the linear case, GEE estimates of all

methods closely resembled those from a GLMM, whereas under a logit link, this correspon-

dence no longer held. This aligns with theoretical work showing that, under a logit link, GEE

estimates are marginal and cannot recover cluster-specific (i.e., conditional) within-person

effects (Neuhaus et al., 1991). More specifically, parameter estimates from GEE tend to

attenuate (i.e., shrink toward zero) as the residual variance of the unmodeled random inter-

cept increases (For an illustration of this, see wardeiling.shinyapps.io/GLMM_population-

averaged-and-person-specific-interpretations; Begg & Parides, 2003; Neuhaus et al., 1991).

This suggests that GEE-based disaggregation under a logit link only supports valid person-

specific interpretations when the DGM includes no random effects—neither unexplained

heterogeneity in the baseline outcome propensity (σu = 0) nor in the predictor-outcome

relationships. This is implausible in most empirical settings.

In principle, disaggregation methods can be applied within the GEE framework in

much the same way as in GLMMs. However, whereas GLMMs model within-cluster depen-

dence via random effects (e.g., u0i), GEEs account for this dependence through a working

correlation matrix R. As a result, deriving the GEE-based formulations of each method are

obtained by omitting u0i from the corresponding GLMM equations. In the case of contin-

uous outcomes (DGMs 1 and 2), the GEE analogues of the four disaggregation methods

follow directly from removing u0i from Equations 14, 17, 19, and 22. Likewise, for binary

outcomes (DGMs 3 and 4), the GEE versions of the four disaggregation methods are derived

by removing u0i from the multilevel logistic model equations (Equations 23–26).

Simulation Study

This simulation study has two primary objectives. First, we examine whether disag-

gregation methods commonly used in MLM generalize to GLMMs when applied to (a) binary

predictors and (b) binary outcomes estimated using a logit link. Second, we assess whether

GEEs require explicit separation of within- and between-person effects—via disaggrega-

https://wardeiling.shinyapps.io/GLMM_population-averaged-and-person-specific-interpretations/
https://wardeiling.shinyapps.io/GLMM_population-averaged-and-person-specific-interpretations/
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tion—when contextual effects are present. Specifically, we investigate the impact of different

design factors, such as sample size, number of measurement occasions, and variance compo-

nents, on estimation bias in the fixed within and contextual effects. Simulations and model

estimation were conducted in R (version 4.4.2; R Core Team, 2024). Parallel computing was

used for efficiency via the doFuture (version 1.0.2; Bengtsson, 2021) and foreach (version

1.5.2; Daniel et al., 2022) packages. The code used for simulating and analyzing these data

are provided as online supplementary materials at github.com/wardeiling/multilevel-vs-gee-

binary.

Data Generation

Data were simulated with the four DGMs. Across all simulation scenarios, certain

parameters were held constant: the fixed intercept was set to γ00 = 0, the within-cluster

effect to β1 = 1.5, the within-person standard deviation (SD) of the continuous predictor

(DGMs 1 and 3) to σX,w = 1, and the level 1 residual SD (only set for DGMs 1 and 2) to

σe = 1. Non-zero values were chosen for the random intercept residual SD σu, reflecting

the assumption that the cluster mean of X does not fully explain stable differences in Y .

Between-cluster variability in X was captured by σX,b (for continuous X; DGMs 1 and 3) or

σZ (for binary X; DGMs 2 and 4). We systematically varied key design factors across the

four DGMs, as summarized in Table 1, excluding scenarios with a contextual effect but no

between-cluster SD, as they are conceptually incoherent. This resulted in 432 − 96 = 336

unique simulation conditions (84 per DGM), each replicated 1,000 times.

Table 1

Summary of Parameters for Each of the Four Data Generating Models

Factor Notation Applies to DGMs Values

Sample size N All 100, 200

Number of time points T All 5, 10, 20

https://github.com/wardeiling/multilevel-vs-gee-binary
https://github.com/wardeiling/multilevel-vs-gee-binary
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Within-cluster SD in continuous X σX,w 1, 2 1

Between-cluster SD in continuous X σX,b 2, 4 0, 1, 3

SD in Z (represents between-cluster

variability in binary X)

σZ 3, 4 0, 1, 3

Fixed intercept γ00 All 0

Contextual effect γ01 All 0, 1, 3

Within-cluster effect β1 All 1.5

Random intercept residual SD (level 2) σu All 1, 3

Residual SD (level 1) σe 1, 2 1

Note. SD refers to standard deviation and DGM to data generating model.

Data Analysis

Each simulated dataset was analyzed using two estimation frameworks: GLMMs and

GEEs. GLMMs were estimated using the lmer and glmer functions from the lme4 package

(version 1.1-36; Bates et al., 2015) with full maximum likelihood estimation for lmer, as

the focus was on fixed effects rather than variance components. GEEs were fitted using

the geeglm function from the geepack package (version 1.3.12; Halekoh et al., 2006), with

independent, exchangeable, and AR(1) structures. For GEEs, the maximum number of

iterations was increased from the default 25 to 50 to support convergence. In summary,

estimation was carried out using one GLMM and three GEE configurations, yielding four

strategies in total.

Each of these four modeling strategies was implemented with the four distinct meth-

ods (UC, CWC, HB and MuCo) outlined for the MLM (see Equations 14, 17, 19). The appli-

cation of these methods to both the multilevel logistic model and GEEs was discussed in the

preceding sections. Since methods HB and MuCo produced virtually identical results across

most scenarios, we chose to present method HB only in the online supplementary materials

(see wardeiling.github.io/multilevel-vs-gee-binary/supplementary_materials.html), rather than

https://wardeiling.github.io/multilevel-vs-gee-binary/supplementary_materials.html
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in the main results and figures. With four estimation strategies and three methods, we ar-

rive at 12 analysis strategies. The GLMM implementations are labeled as GLMM-UC,

GLMM-CWC, and GLMM-MuCo, while the GEE implementations are denoted as GEE-

UC, GEE-CWC, and GEE-MuCo, with the correlation structure name appended.

The primary estimates of interest were the within-cluster effect—estimated as β∗
1 in

UC, βw in CWC and β1 in MuCo—and the contextual effect γ01 (only estimated with MuCo).

Model performance was evaluated in terms of estimation bias, computed as 1
nsim

nsim∑
j=1

(
θ̂j − θ

)
,

where θ̂j is the estimated parameter value for the jth replication, θ is the true parameter value

and nsim denotes the number of replications. When relevant, we also examined convergence

rates and estimation efficiency (i.e., variability across replications). All warnings and errors

encountered during model estimation were logged. Models failing due to convergence issues

or singular fits were excluded from the analysis. To ensure robustness of the reported results,

we excluded parameter estimates exceeding ±100, which occurred sporadically in GEEs with

binary outcomes and were likely indicative of convergence failures. These extreme values were

most frequent in AR(1) implementations using methods GEE-CWC and GEE-MuCo (see

the Appendix for details).

Results

To facilitate interpretation, we focus on four main scenarios, holding the following

constant: N = 200, σe = 1, γ00 = 0, βw = 1.5, γ01 = 3, σX,w = 1 and σX,b = 3. We

varied σu = {1, 3} to assess the impact of unexplained heterogeneity, especially on GEEs,

which does not explicitly model random effects; and T = {5, 20} to evaluate performance

under limited versus sufficient repeated measures. Sample size N had a negligible impact on

average bias and is not discussed further.

DGM 1: Continuous Predictor and Outcome. Figure 3 displays the bias in

within-person and contextual effect estimates for benchmark DGM 1. As expected, Method

UC yielded biased within-person estimates across all implementations, with bias and variabil-

ity decreasing as T increased—consistent with the increasing dominance of within-person ef-
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fect in the composite slope (as explained in the section on the MLM). GEEs with an exchange-

able correlation (GEE-UC-exchangeable) closely mirrored the MLM estimates (GLMM-UC),

which is unsurprising considering their equivalence under a linear model. The AR(1) struc-

ture yielded slightly lower bias (for some other scenarios this was reversed) and the indepen-

dence structure yielded substantially more bias (out of bounds in Figure 3a). In contrast,

disaggregation methods (Methods CWC and MuCo) resulted in tightly distributed unbiased

within-person estimates across both frameworks among the correlation structures of GEEs.

Contextual effect estimates (Method MuCo) were similarly unbiased and consistent across

MLM and GEEs with a sufficient number of timepoints. However, an increase in unobserved

heterogeneity resulted in lower precision across replications. In summary, all estimation

frameworks and correlation structures can recover the within-person and contextual effects

well in linear models when predictors and outcomes are continuous and a disaggregation

method is applied.

DGM 2: Binary Predictor and Continuous Outcome. Figure 4 presents the

results for DGM 2. Patterns were very similar to DGM 1, though with increased overall

variability, impact of unexplained variability (σu) and more pronounced bias. The results for

Method UC mirror those of DGM 1, except that in DGM 2 greater unexplained heterogeneity

(σu = 3) reduced bias. This discrepancy stems from the bounded range of πX,i ∈ (0, 1)

in contrast to the unbounded range of µX,i ∈ (−∞, ∞) in DGM 1. The bounded scale

compresses variance in πX,i, inflating the ratio of unexplained-to-explained variance in β0i

(see Figure 2b). As before, disaggregation methods (CWC and MuCo) yielded unbiased

within-person estimates across frameworks and GEEs correlation matrices. Contextual effect

estimates were again similar across all four implementations using Method MuCo. However,

unlike DGM 1, the contextual effect estimates were biased under a large number of timepoints

(T = 20). Thus, when predictors are binary, disaggregation methods effectively recover the

within-person effect across frameworks and GEEs correlation structures, but tend to yield

similarly biased estimates of the contextual effect.
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Figure 3

Bias for DGM 1 in Within-Person and Contextual Effect for Different Estimation Approaches
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Note. The boxplot shows bias based on 1000 replications for data-generating model 1, which

includes a continuous predictor and outcome. The boxes represent the interquartile range (IQR)

from the 25th to 75th percentiles, with the median indicated by the horizontal line inside. Whiskers

extend to 1.5 times the IQR, and replications outside this range are plotted as dots. UC = un-

centered, CWC = centered within clusters, MuCo = Mundlak contextual, GLMM = generalized

linear mixed model, GEE = generalized estimating equations. T represents the total number of

time points, and σu denotes the random intercept residual variance. Y-axis breaks represent large

intervals relative to bias but are consistent across data-generating models. In panel (a), GEE-UC

with an independence correlation structure falls outside the plotted range, with estimates tightly

clustered around 2.7 across all four scenarios.
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Figure 4

Bias for DGM 2 in Within-Person and Contextual Effect for Different Estimation Approaches
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Note. The boxplot shows bias based on 1000 replications for data-generating model 2, which

includes a binary predictor and continuous outcome. The boxes represent the interquartile range

(IQR) from the 25th to 75th percentiles, with the median indicated by the horizontal line inside.

Whiskers extend to 1.5 times the IQR, and replications outside this range are plotted as dots. UC =

uncentered, CWC = centered within clusters, MuCo = Mundlak contextual, GLMM = generalized

linear mixed model, GEE = generalized estimating equations. T represents the total number of

time points, and σu denotes the random intercept residual variance.

DGM 3: Continuous Predictor and Binary Outcome. Figure 5 shows the re-

sults for DGM 3. While higher T again reduced variability, patterns diverged from those

in DGMs with continuous outcomes. Method UC showed increasing bias in GEEs models
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as σu increased under exchangeable and AR(1) structures and an opposite trend under the

independence structure. Notably, disaggregation performance varied across methods: CWC

estimates were more biased than MuCo estimates across estimation approaches. More specif-

ically, GLMM-CWC yielded biased within-person estimates even under optimal conditions

(T = 20), whereas GLMM-MuCo yielded no bias under these circumstances. GEEs were

biased for both disaggregation methods (GEE-CWC and GEE-MuCo), even under optimal

conditions (T = 20 and σu = 1), though GEE-MuCo showed comparatively smaller bias.

For contextual effects estimated by method MuCo, GLMM was clearly superior to GEEs

across all conditions, especially when σu was large. As DGM 1, the contextual effects of

GLMM where unbiased under a large number of timepoints, suggesting that scenarios with

continuous predictors tend to be unbiased. These findings suggest that in logistic models,

GEEs struggles to recover both within-person and contextual effects. Furthermore, within

GLMM, Method MuCo is essential to avoid bias in the within-person effect.

DGM 4: Binary Predictor and Outcome. Figure 6 displays the results for

DGM 4. Patterns were similar to DGM 3, reflecting the shared binary outcome. Method

UC produced biased within-person estimates in all models, with the exception of GEE-

independence under high unexplained heterogeneity (σu = 3)—a result that is difficult to

explain. Unlike DGM 3, in the shown scenarios GLMM-CWC performed comparably well

as GLMM-MuCo. However, across all scenarios, MuCo still outperformed CWC with a

maximum bias of 0.07 and 0.13 respectively. As in DGM 3, all GEEs implementations with

methods CWC and MuCo yielded biased results. However, unlike DGM 3, when unexplained

heterogeneity was high, CWC and MuCo yielded similar estimates. For the contextual effect

estimated by the MuCo method, GLMM consistently outperformed GEEs, where bias in

GEEs increased as σu increased. As DGM 2, the contextual effects of GLMM where biased

under a large number of timepoints, suggesting that scenarios with binary predictors tend to

be biased. Overall, GLMM-MuCo was again the most consistent and robust method across

conditions.
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Figure 5

Bias for DGM 3 in Within-Person and Contextual Effect for Different Estimation Approaches
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Note. The boxplot shows bias based on 1000 replications for data-generating model 3, which

includes a continuous predictor and binary outcome. The boxes represent the interquartile range

(IQR) from the 25th to 75th percentiles, with the median indicated by the horizontal line inside.

Whiskers extend to 1.5 times the IQR, and replications outside this range are plotted as dots. UC =

uncentered, CWC = centered within clusters, MuCo = Mundlak contextual, GLMM = generalized

linear mixed model, GEE = generalized estimating equations. T represents the total number of

time points, and σu denotes the random intercept residual variance.



WITHIN-PERSON EFFECTS AND BINARY VARIABLES 34

Figure 6

Bias for DGM 4 in Within-Person and Contextual Effect for Different Estimation Approaches

T = 5 T = 20

σ
u =

1
σ

u =
3

UC CWC MuCo UC CWC MuCo

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Method

B
ia

s

Estimation GLMM GEE−independence GEE−exchangeable GEE−AR(1)

(a) Within-Person Effect β1

T = 5 T = 20

σ
u =

1
σ

u =
3

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5B
ia

s

(b) Contextual Effect γ01

(Method MuCo)

Note. The boxplot shows bias based on 1000 replications for data-generating model 4, which in-

cludes a binary predictor and outcome. The boxes represent the interquartile range (IQR) from the

25th to 75th percentiles, with the median indicated by the horizontal line inside. Whiskers extend

to 1.5 times the IQR, and replications outside this range are plotted as dots. UC = uncentered,

CWC = centered within clusters, MuCo = Mundlak contextual, GLMM = generalized linear mixed

model, GEE = generalized estimating equations. T represents the total number of time points, and

σu denotes the random intercept residual variance.
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Discussion

This study addressed an important gap in the literature on clustered longitudinal data

analysis by extending the well-known within- and between-person effects debate beyond the

MLM framework to GLMMs and GEEs with different variable types. First, we general-

ized the established distinction between within- and between-person slopes—traditionally

discussed for continuous variables—to settings involving binary predictors and/or outcomes.

Second, we evaluated how well each disaggregation method, implemented in GLMMs and

GEEs, recovered the within-person effect and contextual effect (i.e., the difference between

the between- and within-person slopes). To assess the role of variable scale, analyses were

conducted across combinations of binary and continuous predictor and outcomes. Although

prior work has examined binary predictors in MLMs and binary outcomes in GLMMs, and

some studies have compared estimation frameworks across disciplines, no study has brought

these strands together. This article fills that gap by offering a systematic evaluation of dis-

aggregation methods across estimation strategies and data types.

Main Findings

The simulation results demonstrate that the effectiveness of disaggregation methods

depends on both the estimation framework and the type of variables involved. As expected,

when contextual effects were present, the uncentered predictor approach consistently failed

to recover the within-person effect, both in the GLMM and across all three GEE variants.

This failure was particularly pronounced for scenarios involving (a) a small number of time

points and (b) binary predictors or outcomes, where bias and variability were substantially

larger than in continuous-variable settings. Furthermore, with continuous outcomes (DGMs

1 and 2), all three disaggregation methods (CWC, HB, MuCo) performed comparably well

across the GLMM and GEE variants. However, this pattern did not generalize to binary out-

comes (DGMs 3 and 4). None of the GEE variants consistently recovered the within-person

or contextual effects. In the GLMM context, the hybrid or Mundlak methods produced

robust estimates, whereas the CWC approach was more susceptible to bias—especially with



WITHIN-PERSON EFFECTS AND BINARY VARIABLES 36

continuous predictors. When comparing results across predictor types, we found that GLMM

estimates of the contextual effect were more biased for binary predictors (DGMs 2 and 4)

than for continuous predictors (DGMs 1 and 3). Taken together, these results point to con-

sistent differences in performance across methods, designs and variable types.

These findings yield several insights. First, although the person-mean centered-only

approach (Method CWC) is often treated as the default or even “gold standard” for esti-

mating within-person effects in multilevel modeling (e.g., Enders & Tofighi, 2007; Hamaker

& Muthén, 2020; Raudenbush, 2009), our results indicate that this strategy may yield bi-

ased estimates when applied to binary outcomes. This is particularly concerning given the

widespread use of this method in studies with continuous outcomes, where researchers may

be inclined to extend the same approach to non-continuous settings. Our findings suggest

that such a transfer is not without risk. To mitigate bias, we found that it is crucial to in-

clude the person-mean of the predictor as a predictor of the random intercept, as is done in

Mundlak’s contextual and the hybrid method. This discrepancy must stem from differences

in the statistical properties of the identity and logit link functions. Specifically, Neuhaus

and Jewell (1993, p. 807) demonstrated that omitting relevant predictors in logistic models

can lead to substantial bias in the estimated coefficients, even when the omitted variables

are independent from those included. In the CWC formulation, the person-mean is omitted

from the model, thereby violating this condition and potentially introducing bias.

Second, our findings contribute to the ongoing debate on the interpretability of GEEs

by clarifying a key point of contention. In line with earlier work (Begg & Parides, 2003),

we demonstrate that for continuous outcomes, GEEs—when paired with a disaggregation

approach—yield estimates of within-person and contextual effects that closely mirror those

from GLMMs. This equivalence is not incidental but follows directly from statistical theory:

With an identity link and normally distributed outcomes, marginal (GEE) and conditional

(GLMM) estimators coincide (Neuhaus et al., 1991; Zeger et al., 1988). Yet, in psycholog-

ical treatments, GEEs are often characterized as producing population-averaged estimates
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that preclude person-specific interpretations (e.g., Ballinger, 2004; Bauer & Sterba, 2011;

McNeish et al., 2017). However, it should be nuanced that with continuous outcomes,

individual-level interpretations remain valid, allowing for the estimation of within-person

parameters.

The picture changes substantially for binary outcomes. Our simulations show that

GEEs, even when combined with a disaggregation approach, cannot recover the true within-

person and contextual effects. The degree of bias increases with the residual variance of

the random intercept, aligning with prior work demonstrating that non-linear link func-

tions—such as the logistic link—break the equivalence between GLMM and GEE estimates

(Neuhaus et al., 1991; Zeger et al., 1988). This divergence arises because the random inter-

cept, which captures outcome heterogeneity due to unobserved covariates, is explicitly mod-

eled in GLMMs but left unaccounted for in GEEs (For an illustration of the impact of the ran-

dom intercept residual variance on this discrepancy, see wardeiling.shinyapps.io/GLMM_population-

averaged-and-person-specific-interpretations). As a consequence, GEE estimates are atten-

uated toward zero (Neuhaus et al., 1991; Zeger et al., 1988). This is visible in our results,

where the GEE estimates fell consistently below the zero-bias line. In the context of positive

true effects, this implies an underestimation of the effect magnitude. Accordingly, in the

context of binary outcomes, Neuhaus et al. (1991) pointed out that GEEs “cannot provide

estimates of changes within individuals over time; these are often quantities of central in-

terest in longitudinal studies” (p. 33). For research questions that focus on within-person

processes, as is often the case in psychology, such attenuation renders the logit-linked GEE

framework ill-suited. In these contexts, conditional models such as GLMMs are generally

more appropriate (Allison, 1999, p. 78).

Third, our findings highlight limitations in estimating contextual effects when relying

on observed person-means within the GLMM framework. Across most simulation conditions,

we observed small but consistent bias in the contextual estimates. One plausible contributor

is Lüdtke’s bias: the sample-based person-mean is an imperfect proxy for the true latent

https://wardeiling.shinyapps.io/GLMM_population-averaged-and-person-specific-interpretations/
https://wardeiling.shinyapps.io/GLMM_population-averaged-and-person-specific-interpretations/
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mean, especially when the number of observations per person is limited (Lüdtke et al.,

2008). In line with prior work on the limitations of disaggregation using observed means

(Asparouhov & Muthén, 2019), the magnitude of bias increased under stronger contextual

effects, reduced between-person variance, and smaller cluster sizes. Notably, this bias was

substantially more pronounced for binary predictors (DGMs 2 and 4) than for continuous

ones (DGMs 1 and 3), underscoring the additional complexities introduced when modeling

non-continuous predictors. While Lüdtke’s bias offers a partial explanation, other sources

likely contribute as well. As discussed in the section on the MLM, binary predictors pose

unique challenges such as truncated distributions and violations of independence (see also

Asparouhov & Muthén, 2019). In the DGMs, the binary predictor was conceptualized as the

observed expression of a latent continuous construct. If this is the case, we recommend the use

of latent centering approaches of multilevel structural equation modeling (e.g., Asparouhov

& Muthén, 2019), which provide more robust estimates, particularly in the presence of binary

predictors.

Finally, an unanticipated but important finding concerns the instability of GEE es-

timation when disaggregation methods are applied. Although GEEs are frequently com-

mended for their robustness to misspecification of the working correlation structure (e.g.,

Ballinger, 2004; Zeger et al., 1988), our simulations revealed instances of extreme and erratic

estimates under several conditions. These estimation anomalies were specific to binary out-

comes and most prevalent when the AR(1) working correlation structure was used—rarely

occurring under an exchangeable structure and absent under independence (see the Appendix

for details). This suggests that the combination of a logit link with complex correlation struc-

tures, particularly when misspecified, may exacerbate numerical instability in GEEs.

Limitations and Future Directions

This study has several limitations that point to important directions for future re-

search. First, our simulations examined the recoverability of within-person effects under

DGMs that satisfy the core assumptions of GLMMs and GEEs (see McNeish et al., 2017).
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In practice, however, these assumptions are often violated, potentially leading to biased es-

timates. Within biomedical applications, GEEs are sometimes preferred for their robustness

to distributional assumptions about random effects (Hubbard et al., 2010), yet it remains

unclear whether this robustness generalizes to the retrieval of within-person effects. Future

studies should explicitly examine how violations—such as non-normal random effects or mis-

specified variance structures—impact estimation, and whether the equivalence of GEE and

GLMM estimates for continuous outcomes persists under such conditions.

Second, while our focus was on random intercept models, the inclusion of random

slopes is a central strength of the multilevel framework (Bell & Jones, 2015). In longitudinal

data, researchers are often interested in capturing within-person effects while allowing for

individual differences in the strength of these effects (e.g., Geschwind et al., 2011). Assum-

ing a homogeneous within-person association across individuals can be overly restrictive,

as many psychological processes plausibly vary from person to person. The inclusion of

a random slope would alter the application of disaggregation methods in GLMM estima-

tion, as the equivalence between the hybrid model and Mundlak’s contextual model is lost

under this specification (Snijders & Bosker, 2011). Additionally, since the GEE frame-

work does not account for random slope heterogeneity, it remains an open question whether

disaggregation-based GEEs can still recover within-person effects when such heterogeneity

is present. Therefore, future research should extend the DGMs to include random slopes,

allowing for a more comprehensive evaluation of GLMM methods and the suitability of GEE

for investigating within-person effects in such contexts.

Third, we restricted our simulations to binary predictors and outcomes. Although

prior work has begun to explore centering strategies for multi-categorical predictors (e.g.,

Yaremych et al., 2023), applications involving multi-categorical outcomes remain largely

unexamined. Expanding the current framework to accommodate these outcome types rep-

resents a critical step for broadening the generalizability of disaggregation methods.
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Conclusion

Within the multilevel modeling literature, the importance of distinguishing within-

from between-cluster effects has been stressed repeatedly and by many (e.g., Enders &

Tofighi, 2007; Kreft et al., 1995; Raudenbush & Bryk, 2002), to the point that it has become

standard practice among psychological researchers. However, the applicability of disaggre-

gation methods to multilevel models with non-continuous predictors and outcomes, as well

as GEEs, has not been systematically examined This study offers the first comprehensive

account of how the within- and between-person effects debate extends to binary predictors,

binary outcomes, and the GEEs framework. Based on our findings, we recommend using

GLMMs with Mundlak’s contextual or the hybrid approach when estimating within-person

effects regardless of variable type.
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Appendix

Handling of Extreme Parameter Estimates in GEEs

Diagnostic evaluation of extreme parameter estimates is reported in the supplemental mate-

rials at wardeiling.github.io/multilevel-vs-gee-binary/supplementary_materials.html. This

revealed that, when modeling binary outcomes, the geeglm function (Halekoh et al., 2006)

occasionally produced bias estimates of implausibly large magnitude (e.g., 1012 or higher),

likely reflecting non-convergence. Such extreme values consistently exceeded ±1011, while

the vast majority of estimates fell within a narrow range of ±2.5 units around the mean bias.

Notably, the number of extreme estimates remained unchanged when using a threshold of

±20, ±100 or ±1011, indicating that non-convergence resulted in extreme rather than mod-

erate deviations from the true parameter values. Across 76 simulation scenarios, we observed

at least one replication with an estimate exceeding ±1011. Extreme estimates were specific

to binary outcomes and most prevalent when the AR(1) working correlation structure was

paired with a disaggregation method (methods CWC, HB and MuCo)—rarely occurring

under an exchangeable structure and absent under independence. In one scenario, approx-

imately half of the replications produced extreme values. To maintain the integrity of the

reported results, we excluded all estimates exceeding ±100 from the final analyses.

https://wardeiling.github.io/multilevel-vs-gee-binary/supplementary_materials.html
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