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Abstract

This study examines the comparative classification performance of (sparse) principle component
analysis ((S)PCA) in addition to stepwise logistic regression for the classification of prostate tu-
mor samples versus healthy ones through gene expression data. The three approaches were
compared using a 5-fold cross-validation framework in which averaged classification metrics in-
cluding accuracy, s ensitivity, specificity and area under the curve (AUC) were calculated. Step-
wise logistic regression performed poorly, having an AUC of 0.5, indicating that this method
performs no better than a random guessing approach. The (S)PCA model with 8 PCs showed
distinctly improved predictive performance metrics with AUC of 0.949 and 0.959, respectively.
In conclusion, (S)PCA models have a great classification advantage over stepwise logistic regres-
sion in gene expression data analysis in which SPCA conceivably preferable for usage in gene
expression data analysis due to its model simplicity and reduced overfitting characteristics.



1 Introduction

Prostate cancer arises from the malignant transformation of prostate tissue, driven by various
cellular and microenvironmental factors (I). This transformation is marked by sequential al-
terations in gene expression, which make prostate cells increasingly prone to tumor formation.
Genes involved in this process may exhibit upregulation or downregulation. In cancer devel-
opment, tumor-promoting genes are typically upregulated, while tumor-suppressing genes are
often downregulated, interrupting the cells’ safety mechanisms.

In this study, we analyze gene expression data from 52 prostate tumor samples and 50
normal tissue samples. Figure and Figure highlight genes with significantly up- or
downregulated expression in tumor samples compared to normal samples. The objective of this
investigation is to classify (or predict) a binary outcome—tumor versus normal tissue—based on
the expression levels of 6,033 genes. This analysis aims to identify key gene expression patterns
indicative of tumorigenesis in prostate cancer.

Logistic regression is a commonly used model for binary classification. However, the high
dimensionality of this dataset (p > N) poses several challenges, including multicollinearity,
inflated standard errors (non-significant p-values), non-uniqueness of solutions, and overfitting.
To address these issues, a feature selection or dimensionality reduction approach is required.

This study compares the predictive performance of three approaches: (a) stepwise logistic
regression, (b) principal component analysis (PCA) with logistic regression, and (c) sparse PCA
(SPCA) with logistic regression. In stepwise logistic regression, the high dimensionality is man-
aged by iteratively adding or removing genes based on a statistical criterion (e.g., deviance or
AIC) to assess whether the model improves. PCA reduces dimensionality by creating principal
components (PCs) as linear combinations of the input variables, capturing maximal variance (3)).
However, PCA retains contributions from all original features in the transformed components
(35 IZI)[L limiting its interpretability and leading to potential theoretical failure in the p > N
regime (3). SPCA addresses these limitations by enforcing sparsity in the PCs, ensuring that
only a subset of variables contributes to each component (3).

This study addresses the following research question: What is the comparative classification
performance of stepwise logistic regression, PCA with logistic regression, and SPCA with logistic
regression? Although stepwise logistic regression is straightforward to implement, it is expected
to yield inferior predictions compared to the PCA-based approaches due to its susceptibility
to overfitting and multicollinearitylﬂ While SPCA’s added sparsity may aid with biological
interpretability, its predictive performance might be slightly lower than that of standard PCA,
as it could exclude minor variability in the data that are relevant to the outcome.

Figure 1: Gene expression of Two Genes from Prostate Cancer Gen Expression Dataset.
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2 Methods

2.1 Data Pre-Processing

The gene expression dataset was retrieved from the spls package and consisted of 52 prostate
tumor samples and 50 normal samples. Each sample contained 6,033 features corresponding
to gene expression levels, along with a binary outcome variable indicating sample status (0 =
normal, 1 = tumor). The dataset was pre-normalized, log-transformed, and standardized to
zero mean and unit variance across genes (). These preprocessing steps ensured appropriate
scaling for subsequent analyses. Further normalization or scaling was unnecessary, as the pre-
standardization aligned with the assumptions of PCA and SPCA (7).

2.2 Dimension Reduction Techniques and Model Fitting

To address the high dimensionality of the dataset and mitigate overfitting in logistic regression
models, three approaches were applied: (1) hybrid stepwise logistic regression, (2) PCA, and (3)
SPCA. All analyses were conducted in R version 4.4.2 (4)), with the relevant packages specified
below.

Hybrid stepwise logistic regression was implemented using the MASS package’s stepAIC()
function. This method iteratively selected predictors by minimizing the Akaike Information
Criterion (AIC) through a combination of forward selection and backward elimination (2). The
algorithm began by fitting an intercept-only model and a full model with all predictors using
glm(). In each iteration, a forward step added the predictor that produced the largest reduction
in AIC (if any), and a backward step removed predictors whose exclusion further reduced AIC.
This iterative process continued until no additional improvement in AIC was possible.

PCA was applied using the stats package’s prcomp () function to transform the 6,033 pre-
dictors into orthogonal PCs that capture the majority of the dataset’s variance. The number of
PCs (k =1,...,33) was optimized using 5-fold cross-validation (CV)E]7 selecting the configura-
tion that maximized the average area under the curve (AUC) of logistic regression models fitted
using glm() across the folds.

SPCA was implemented using the sparsepca package’s rspca() function (6). SPCA intro-
duces a sparsity-inducing LASSO penalty, ensuring that each PC is influenced by only a subset
of genes (S)ﬂ A grid search was performed over the number of components (k =1,...,33), the
sparsity-controlling parameter (o = 0.1,0.01,0.001,0.0001), and the ridge shrinkage parameter
(8 =0.1,0.01,0.001,0.0001). The optimal configuration was selected based on the highest aver-
age AUC achieved in 5-fold CV, with logistic regression models fitted to the sparse PCs using
glm().

2.3 Comparison and Validation Strategy

The three approaches were compared using a 5-fold cross-validation framework (2]), implemented
with the caret package for data partitioning and metric computation. The dataset was di-
vided into five folds, with models iteratively trained on four folds and tested on the remaining
fold (Figure . This process was repeated for all folds, and average classification metrics—
including accuracy, sensitivity, specificity, and AUC—were calculated using the pROC package.
AUC was the primary metric for tuning the number hyperparameters and for identifying the
best-performing approach due to its robustness in imbalanced classification settings. Receiver
operating characteristic (ROC) curves were created to visually depict the AUC.

3CV selects components based on variance explained in the outcome, while alternative criteria (e.g., scree plot,
Kaiser criterion or cumulative variance) focus solely on capturing variance among features, ignoring predictive
utility (7).

4PCA can be interpreted as a ridge regression problem, while SPCA incorporates elastic-net regularization
through the LASSO penalty (5).



Figure 2: 5-Fold Cross-Validation
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Note. For a dataset of T' = 40 observations, the figure represents the elements of the test set
as dark-colored squares and the elements of the training set as blank squares. Each iteration
consists of T' time-points, with K total iterations in K-fold CV.

3 Results

This section outlines the performance of the three approaches, reporting accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and AUC, each
to three decimal places. First, we discuss the model selection process within each approach,
followed by a comparison of the predictive performance of the optimal model of each approach.

3.1 Model Selection Within Approaches

For stepwise logistic regression, the intercept-only model was selected as the best model in all
five folds. Since the model contains no predictors, the intercept corresponds to the observed
proportion of ¥ = 1 in the training data. Consequently, predictions for the test set are en-
tirely determined by whether this proportion exceeds 0.5, resulting in perfect sensitivity (1) or
specificity (1), while the other is 0 (Table [1]). Due to this structure, either the PPV or NPV is
undefined (NaN) for each fold. The AUC is consistently 0.5, indicating no ability to differentiate
between positives and negatives.

Table 1: Performance Metrics for 5-Fold Stepwise Logistic Regression

logistic regression | accuracy | sensitivity ‘ specificity ‘ PPV ‘ NPV ‘ AUC ‘

fold 1. 0.5 0 1 NaN | 0.5 0.5
fold 2 0.429 0 1 NaN | 0.429 | 0.5
fold 3 0.381 0 1 NaN | 0.381 | 0.5
fold 4 0.35 1 0 0.35 | NaN | 0.5
fold 5 0.4 1 0 0.4 | NaN | 0.5
Average 0.412 0.4 0.6 NaN | NaN | 0.5

Note. NaN values mark divisions by 0.

For PCA, the number of PCs was optimized by maximizing the AUC while minimizing model
complexity for interpretability. A total of 33 PCs were generated from the gene expression data.
Figure [3] shows the average AUC and accuracy across folds for models with varying numbers
of PCs. The model with 29 PCs achieved the highest AUC; however, the model with 8 PCs was
selected for parsimony, as its AUC was nearly identical.



Figure 3: Averaged AUC Scores for Each PC in 5-Fold PCA + Logistic Regression
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For SPCA, model selection involved optimizing hyperparameters (« and 3) and the number
of PCs to maximize the AUC. Figure [ shows the grid search results, where models with smaller
« values tended to favor parsimony while achieving high AUC. The best-performing model used
8 PCs with a = 0.0001 and g = 0.1.

Figure 4: Averaged AUC Scores for Different PC, « and 3 in 5-Fold SPCA + Logistic Regression
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3.2 Comparison of Three Optimal Models

The performance of the three approaches is summarized in Table [2] with AUC serving as the
primary evaluation metric. Stepwise logistic regression performed the worst, with an AUC of
0.5, equivalent to random guessing. Its poor accuracy (0.412), sensitivity (0.4), and specificity
(0.6), along with undefined PPV and NPV, indicate its inability to identify meaningful patterns.

In contrast, PCA combined with logistic regression demonstrated strong performance, achiev-
ing an AUC of 0.949 and high accuracy (0.882), sensitivity (0.894), and specificity (0.894). These
results suggest that PCA effectively reduced dimensionality while retaining the most predictive
features. SPCA outperformed PCA slightly in terms of AUC (0.959) but exhibited lower accu-
racy (0.754) and specificity (0.698), indicating a higher tendency for false positives. However,
its sensitivity (0.858) remained high, reflecting strong detection of true positives.

Overall, PCA demonstrated the most balanced performance across metrics, while SPCA
slightly improved AUC at the cost of increased false positives. Stepwise logistic regression,
meanwhile, was wholly inadequate for high-dimensional data. These findings underscore the
advantages of PCA-based methods in predictive modeling for gene expression datasets.

Table 2: Comparison of Prediction Metrics Between Three Approaches

’ Approach ‘ Accuracy ‘ Sensitivity ‘ Specificity ‘ PPV ‘ NPV ‘ AUC ‘
Stepwise Logistic Regression 0.412 0.4 0.6 NaN | NaN 0.5
PCA + Logistic Regression 0.882 0.894 0.894 0.875 | 0.916 | 0.949
SPCA + Logistic Regression 0.754 0.858 0.698 0.743 | 0.884 | 0.959

Note. All shown metrics were averaged across the folds. NaN values mark divisions by 0.
PPV = positive predicted value, NPV = negative predicted value, AUC = area under the curve.

The ROC curves accompanying the AUC values are shown in Figure 5| For stepwise logistic
regression, the ROC curve is a diagonal line, overlapping the red dashed line of a random
classifier, confirming its inability to separate positives from negatives. PCA demonstrates a
well-separated ROC curve, albeit with some jaggedness due to the small test set size (n = 20),
possibly indicating overfitting. The SPCA ROC curve is nearly identical to that of PCA, showing
excellent separation and comparable predictive performance.



Figure 5: ROC curves of the different models.

(a) Stepwise Logistic Regression (b) PCA + Logistic Regression with 8 PCs
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Note. The dashed red line represents the performance of a random classifier, where there
is no separation of positives and negatives; the grey lines represents the ROC-curves of the 5
different folds; and the black line represents the average across the folds. FPR = false positive
rate.

4 Conclusion

This study investigated the comparative performance of three approaches—stepwise logistic
regression, PCA with logistic regression, and SPCA with logistic regression—for classifying
prostate tumor and normal tissue based on gene expression data. The research question sought to
evaluate which method offers the best classification performance while maintaining interpretabil-
ity. The findings align with the hypothesis that stepwise logistic regression would underperform
due to its vulnerability to overfitting and multicollinearity. In all five cross-validation folds,
the stepwise logistic regression models selected only the intercept, resulting in an AUC of 0.5—
indicating an inability to classify healthy samples from tumor samples. This finding emphasizes
the method’s limitations in high-dimensional datasets, as it fails to account for multicollinearity



or complex interrelationships among predictors, which are typical in gene expression data.

As expected, the PCA-based logistic regression model significantly improved classification
performance, achieving an AUC of 0.949 and an accuracy of 0.882. However, the current im-
plementation of the PCA method only detects linear correlations within the data, making it
incompetent for the identification of other structures in the gene expression data. Besides that,
this method maintain all incorporate all input variables, limiting its interpretability and con-
tributing to a more overfitted model. SPCA introduces sparsity, potentially contributing to
enhancing parsimony and reducing overfitting in this prediction model. Although the AUC
score of the SPCA model is higher, all other performance metrics are lower compared to the
PCA model. This suggests that incorporating multiple performance metrics into the tuning
procedure—rather than relying solely on AUC as was done in this investigation—may be nec-
essary to achieve more balanced performance across all evaluation criteria.

Applying dimensionality reduction techniques like (S)PCA to gene expression data can signif-
icantly aid in identifying important genes involved in prostate cancer development. Examining
the loadings of individual genes that strongly contribute to the principal components (PCs) can
help uncover previously unknown genes associated with prostate cancer tumorigenesis. This
interpretability is a distinct advantage of SPCA over standard PCA, as SPCA allows for filter-
ing genes with non-zero loadings for each PC, simplifying the identification of relevant genes.
Additionally, biplots can be constructed, where genes aligned in similar directions may indi-
cate relatedness, potentially revealing new patterns or gene expression pathways contributing to
prostate cancer development. In conclusion, applying PCA or SPCA to gene expression data can
facilitate the discovery of previously unidentified genetic patterns indicative of tumorigenesis in
prostate cancer, enhancing our understanding of the disease and supporting the development of
targeted therapies.



References

1]

2]

Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes
Dev. 2018 Sep 1;32(17-18):1105-1140. https://doi.org/10.1101/gad.315739.118|

Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, infer-
ence, and prediction. 2nd ed. Springer Series in Statistics. New York: Springer; 2009. ISBN:
9780387848846. Available from: https://books.google.nl/books?id=eBSgoAEACAAJ.

Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the lasso and
generalizations. CRC Press; 2015. ISBN: 9781498712170. Available from: https://books.
google.nl/books?id=f-A_CQAAQBAJ.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing; 2024. https://www.R-project.org/

Zou, H., Hastie, T., Tibshirani, R. (2006). Sparse Principal Component Analysis. Journal
of Computational and Graphical Statistics, 15(2), 265-286. https://doi.org/10.1198/
106186006X113430

Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., Aravkin, A. Y. (2020).
Sparse Principal Component Analysis via Variable Projection. STAM Journal on Applied
Mathematics, 80(2), 977-1002. https://doi.org/10.1137/18M1211350

James, G., Witten, D., Hastie, T., Tibshiran, R. (2023). An introduction to Statistical
Learning with Applications in R.

Dettling M, Biithlmann P. Supervised clustering of genes. Genome Biology. 2002;3(12):re-
search0069.1. https://doi.org/10.1186/gb-2002-3-12-research0069


https://doi.org/10.1101/gad.315739.118
https://books.google.nl/books?id=eBSgoAEACAAJ
https://books.google.nl/books?id=f-A_CQAAQBAJ
https://books.google.nl/books?id=f-A_CQAAQBAJ
https://www.R-project.org/
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1137/18M1211350
https://doi.org/10.1186/gb-2002-3-12-research0069

	Introduction
	Methods
	Data Pre-Processing
	Dimension Reduction Techniques and Model Fitting
	Comparison and Validation Strategy

	Results
	Model Selection Within Approaches
	Comparison of Three Optimal Models

	Conclusion

