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1 Introduction

1.1 LISS panel survey

The LISS (Longitudinal Internet Studies for the Social Sciences) panel is a longitudinal panel survey conducted
online by CentERdata from Tilburg University in which participants are required to fill in a set of questions
every month concerning work, education, descent, income, political views, values and personality (Scherpenzeel,
2011). The sample frame of the LISS is the nation-wide address frame of Statistics Netherlands. A simple
random sample of 10,150 addresses was drawn from this frame at the inception of the panel in 2007, with only
households in which at least one individual understood Dutch being included in the survey (Scherpenzeel,
2011). Households that did not have access to internet or a suitable device were provided with one by
CentERdata in order to account for coverage bias. This was a particular concern in 2007 as internet coverage
was only 88% (Knoef & Vos, 2008) compared to over 95 % in 2021 in the Netherlands (de Clercq et al., 2023).

The eight core modules of the panel are the following:

e Family and Household

e Economic Situation and Housing
o Work and Schooling

e Social Integration and Leisure

o Health

e Personality

e Religion and Ethnicity

e Politics and Value

These are supplemented with an open access data collection, the themes of which are put forward by external
academic researchers (Scherpenzeel, 2011).

Only four data sets from the LISS panel are reviewed here, containing the core variables of the LISS panel
from July 2018, July 2019, July 2020 and July 2021. The variable of interest was nettoink, the net household
monthly income in euros. Associated Missing values were imputed by the original researchers and were stored
under the name nettoink f.

1.2 Income-related questions and missingness

There exists a wealth of research supporting the claim that information about net income is harder to acquire
than other types of information. Indeed, Yan et al. find that 20-40% item non-response is to be expected on
income-related questions (Yan et al., 2010). Non-repsonse rates for the current data are presented in the table
below and are uncharacteristically lower, perhaps due to the sampling frame or the high unit non-response,
evidenced by large fluctuations in sample sizes between waves.

There is an ongoing discussion surrounding the usefulness and methods for imputing missing income values.

2018 2019 2020 2021 Overall
(N=10702) (N=9649) (N=11040) (N=10110) (N=41501)
nettoink
Mean (SD) 1350 (3270) 1390 (2450) 1470 (2750) 1520 (2810) 1430 (2840)
Median [Min, 1250 [0, 1250 [0, 1390 [0, 1450 [0, 1300 [0,
Max] 231000] 145000] 147000] 147000] 231000]
Missing 714 (6.7%) 692 (7.2%) 779 (7.1%) 693 (6.9%) 2878 (6.9%)

Unfortunately, in the case of the LISS panel, no information is provided in the datasets or documentation
concerning the likely missing data mechanism or the reason why the data is missing (such as not knowing or
refusing). Chi-squared test comparing net income being missing and other variables can however be conducted
to evaluate whether MCAR, (Missing Completely At Random) can be assumed. P-values from these tests



across all years for various variables are presented in the following table. Comparisons for specific levels of
categorical variables are not presented for conciseness.

## Missing data analysis: nettoink P
## geslacht 0.001
## positie <0.001
#i# leeftijd <0.001
#i# aantalhh <0.001
## aantalki <0.001
## partner 0.386
## burgstat <0.001
#it woonvorm <0.001
## woning <0.001
## belbezig <0.001
## oplcat <0.001

Since most of the obtained p-values are small, it is unlikely that the missing data is MCAR. Upon further
investigation, several intuitive patterns between net household income being missing and other variables can
be drawn. Participants that are not the household head (included in positie) are less likely to have provided
their net household income, perhaps because that information was not available to them. This effect carries
over to the number of people living in the household (aantalhh), since the higher the number, the less likely
it is that the respondent will be the household head. This theory is further supported by a chi-square test
between both variables (p-value < 2.2e-16), suggesting a link between them. Similarly, participants who
were unable to work or were not working (belbezig) are more likely to have provided their net household
income, perhaps because this did not involve disclosing their individual income. Respondents whose highest
level of education was primary school (oplcat) are also more likely to have responded. This may be due to
other respondents having a higher monthly income and thus not wanting to declare it. This poses a problem
for imputation as it will be hard to predict higher values where they were not given. The aforementioned
patterns provide some insight into whether the missing values were obtained through lack of knowledge or
refusal.

1.3 LISS imputation procedure

According to the documentation, imputation of missing net income values was initially performed for
participants whose gross income was available. This also holds true for the other way around, insofar as gross
income was imputed from available net income values. The formula used to do so is given by:

nettoink; = exp(—0.5059772716 + In(gross income) * 1.2084397177 + In(gross income)? * —0.0246538113
+(age > 64) * In(gross income) * 0.0158967975 + (household head) % 0.0263173212 + (paid employement) % 0.2265126592
+(paid employement) * In(gross income) * —0.0300171994

Where ‘age > 64’, ‘household head’ and ‘paid employement’ are binary variables indicating whether the
participant is strictly over 64, whether they are the head of their household and whether they are currently
in paid employement, respectively.

Furthermore, since participants were also given the possibility to provide bracketed information on net income,
the midpoints of these brackets were used as an estimate of exact net income. This was deemed acceptable
by the researchers of the LISS panel as observed net income values in each bracket averaged their midpoints.
This was however not relevant to the datasets at hand as none of the respondents provided only bracketed
information. The following plots illustrate the final number of imputed values per year as well as the number
of participants for which one year or more of net income is missing.

## Number of missing values on net income per year



##
#i# 0 1 2 3 4
## 7163 827 2835 1820 790

## Proportion of participants for which at least one value is missing
## [1]1 0.4668403
## Number of imputed and remaining missing values per year

## 2018 2019 2020 2021
## Imputed values 32 34 32 30
## Remaining missing values 3415 4444 3142 3988

Only a small proportion of missing values were imputed, whilst a considerable proportion (46.6%) of the
participants failed to provide their net income on at least one occasion, according to the tables above. There
thus remains a lot of missing values after addition of the imputations (labelled nettoink f). The researchers
admit in the documentation that other variables in the datasets could perhaps be used to impute values for
respondents that did not provide any information about gross or net income. This was however not done as
it was deemed too time-consuming.

A central objective of the work presented here is thus to improve on this imputation procedure by obtaining
information about more of the missing values present in the datasets.

1.4 Longitudinal Imputation Methods

The current LISS imputation procedure has three considerable limitations. First, as imputations for the
target variable net income are only performed when data regarding gross income is available, a large number
of missing values is not imputed. Without further imputation, analysts and researchers will likely choose to
ignore cases with item non-response in their analyses (list-wise or case-wide deletion). However, analysis of a
similar social-economic longitudinal panel survey, the German Socio-Economic Panel Study (SOEP), showed
that item non-response in survey questions regarding income was most prevalent in the tails of the income
distribution, and particularly in the upper tale (Frick & Grabka, 2014). Consequently, ignoring non-response
can introduce bias and underestimate variance.

Secondly, the current LISS imputation procedure only considers data from the same panel wave for the
imputation procedure. As a result, valuable information that may have been obtained in previous waves are
not considered in the imputation procedure.

Finally, the procedure is based on simple imputation, which does not account for the uncertainty caused
by missing values. Observed values and imputed values are treated equally in analyses following single
imputation, which may cause underestimation of the variance. The alternative to single imputation, multiple
imputation, attempts to reflect the uncertainty of the missing data by creating multiple imputed datasets,
analysing these, and combining the results (Buuren, 2018).

Many single imputation methods are available for longitudinal survey panel data, including hotdeck methods,
carryover methods, nearest-neighbour regression, and row-and-column methods. Whereas hotdeck and
regression methods tend to use cross-sectional information from the same wave to impute the missing data,
carryover methods exclusively use longitudinal data from different waves to impute the data. Some examples
of carryover methods are the last observation carried forward (LOCF), the next observation carried backward
(NOCB), and taking the average of the last known and next known values (Engels & Diehr, 2003). The
row-and-column method, also known as the Little and Su method, is a nearest neighbour technique that
considers both cross sectional and longitudinal information. This method incorporates both information
about the overall trend of the data and the single unit levels (Scholtus et al.; 2014). Compared to other
single imputation methods, it tends to have a higher predictive, distributional, and estimation accuracy
(Watson & Starick, 2011). This method also tends to be robust against violations of the missing-at-random
(MAR) assumption and therefore often a considered method when data is expected to be missing not at
random (MNAR)). This Little and Su method is used in many national panel studies, including the German



Socio-Economic Panel Study (SOEP) (Frick & Grabka, 2014) and the Longitudinal Study of Australian
Children (LSAC).

Although the Little and Su method seems to perform better than other single imputation methods, it still
suffers from the disadvantages of being a single imputation method (Spiess et al., 2021). Furthermore, although
imputed data with the Little and Su method seems to be very reliable when the data is used in cross-sectional
analyses, the performance seems lower in longitudinal analyses. For example, when looking at income mobility
over different panel waves the Little and Su method seems to somewhat overestimate short-term mobility
and under-estimate long-term mobility (Lipps & Kuhn, 2023; Westermeier & Grabka, 2016). Although it
might theoretically be possible to extend the Little and Su method to multiple imputation, there is little
information available on how this would work in practice. More recent literature has therefore focused on the
possibilities extending multiple imputation methods to longitudinal survey panel data (Huque et al., 2018;
Van Buuren et al., 2011). The two most common methods are joint modelling (JM) and fully conditional
specification (FCS). The last method is also known as sequential regression or the chained equations method.
Joint modeling tends to work well on continuous data but assumes a joint normal distribution of the data.
The FCS method imputes missing data on a variable-by-variable basis and therefore does not rely on the
joint normality assumption. Although it is slower than joint modeling imputation and is more susceptible
to converging issues, it is often the recommended method when dealing with different variable types. This
method also tends to perform well for longitudinal wealth mobility analyses (Westermeier & Grabka, 2016).
Both methods are available within the ‘mice’ library in R.

1.5 Aims and objectives

Given the constraints and limited use of the current LISS imputation procedure, the objectives of the current
report include extending the LISS imputation procedure by incorporating longitudinal data and additional
covariates, and exploring the merits and drawbacks of multiple imputation versus stepwise imputation on
extensive datasets. Although the research is primarily exploratory, answering questions surrounding the
use of various multiple imputation procedures, such as what advantages FCS holds over joint modelling,
remains a key aspect of the project. In order to compare several imputation models, including the original
LISS imputation framework, median income and income distribution across age will be treated as outcome
variables and compared across models.

2 Imputations

In the following section, two different imputation methods will be applied to the LISS panel data from 2018
to 2021. The first method is a stepwise approach that directly builds upon the imputation method already
developed by the LISS researchers. In the first step, available cross-sectional data is used to impute the target
variable net income (‘nettoink’) with the equation developed by LISS. The second step also uses longitudinal
data from different waves to impute missing values by applying the row-and-column or Little and Su method.
As the Little and Su imputation method only works for units with at least one observation in the available
waves, units with missing data in all available waves are not imputed. In an optional third step, these missing
values are then imputed by multiple imputation with chained equations (MICE) or stochastic regression.
Whether this last step is performed should be decided by the researcher based on their research questions,
hardware limitations and the number of still missing values.

The second method exclusively uses multiple imputation with fully conditional specification (FCS) or the
chained equations method. This imputation method has the advantage of using both longitudinal and
cross-sectional data and allows for the specification of covariates to be used in the imputation. Furthermore,
by creating multiple imputed datasets and combining these results, this imputation method better reflects
the uncertainty introduced by missing data and can therefore more accurately estimate variances.

The main advantage of having two imputation methods available for the LISS panel data is that is allows the
researcher to choose an approach that fits their research questions or other possible considerations. Based on
the previous research into imputation methods for longitudinal data, we expect that the relatively simpler
Little and Su imputation method will suffice for cross-sectional analysis, for example when interested in



population averages or income inequality. Strong expectations that the missing data is MNAR might also be
a consideration that leads to choosing the stepwise approach. On the other hand, if the research question(s)
require longitudinal data analysis, an FCS multiple imputation method will likely be preferred. Hardware
limitations, running time, and size of the data (number of waves and/or covariates) may also be considerations
that researchers would like to take into account when choosing an imputation method.

In the following section, the steps that were taken in pre-processing the LISS panel data are briefly discussed.
This is followed by the explanations and implementations of the two imputation approaches, as well as the
exploration of relevant considerations like the choice of covariates and the predictive power of previous waves.

2.1 Primary Data Pre-processing

In the initial general pre-processing procedure, we first imported the four .sav data files and combined them to
form one dataframe in long format (i.e., with year as a variable). After this, several variables were judiciously
excluded based on redundancy and relevance considerations. Specifically, “gebjaar” (Year of birth), “Iftdcat”
(Age in CBS categories), and “lftdhhh” (Age of the household head) were deemed redundant due to the
presence of the variable “leeftijd” (Age of the household member). “Herkomstgroep” (Origin) faced removal
due to an excessive amount of missing values and weak correlation with net income, as assessed through violin
plots. Similarly, “sted” (Urban character of place of residence) was excluded owing to its weak association
with income variables.

Given the pronounced correlation between “oplcat” (Level of education in CBS categories) and income,
the variables “oplmet” (Highest level of education with diploma) and “oplzon” (Highest level of education
irrespective of diploma) were removed to mitigate redundancy. Variables such as “brutoink_f” (Personal
gross monthly income in Euros, imputed), “nettoink f{” (Personal net monthly income in Euros, imputed),
“netinc” (Personal net monthly income in Euros, not including nettocat), “doetmee” (Household member
participates in the panel or not), “werving” (From which recruitment wave the household originates), “simpc”
(Does the household have a simPC), and “nohouse__encr” (Number of the household encrypted) were excluded
due to their non-relevance in the imputation process. Furthermore, the variables brutocat (Personal gross
monthly income in categories) and nettocat (Personal net monthly income in categories) were excluded as
there were only 2 cases were these variables were non-missing and the variables nettoink and brutoink were
not missing respectively.

# select data
subset <- datal %>’

select(nettocat, nettoink, brutocat, brutoink)
# plot the missing data pattern
md.pattern(subset, rotate.names = TRUE)
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nettoink
brutocat
brutoink

24092 0

14531 2

128 2

2750 4

2878 2878 17281 1728140318
## nettocat nettoink brutocat brutoink

## 24092 1 1 1 1 0
## 14531 1 1 0 0 2
## 128 0 0 1 1 2
## 2750 0 0 0 0 4
## 2878 2878 17281 17281 40318

Subsequently, “nettoink” and “brutoink” were transformed from the factor to character class and then to
numeric class. This multi-step process was necessary to address potential issues that could arise when directly
converting to numeric. Missing values in “nettoink” and “brutoink” were appropriately recoded to NA in
accordance with the codebook. Empty levels of categorical variables were systematically removed.

We removed the variables gebjaar (Year of birth), lftdcat (Age in CBS categories) and lftdhhh (Age of
the household head) because they are redundant considering the presence of the variable leeftijd (Age of
the household member). Herkomstgroep (origin) was removed because it contained too much missingness.
sted (Urban character of place of residence) is very weakly related to income variables so it was removed.
Taking into account the strong relation of oplcat (level of education in CBS categories) and income, oplmet
(Highest level of education with diploma) and oplzon (Highest level of education irrespective of diploma) were
removed for redundancy. Since brutoink f (Personal gross monthly income in Euros, imputed), nettoink f
(Personal net monthly income in Euros, imputed), netinc (Personal net monthly income in Euros, not including
nettocat), doetmee (Household member participates in the panel or not), werving (From which recruitment
wave the household originates), simpc (Does the household have a simPC), and nohouse__encr (Number of the
household encrypted) are not relevant for imputation, they were also removed. Then nettoink and brutoink
were first converted to character class and then to numeric class because they were originally saved as factor
variables. Missing values in nettoink and brutoink were correctly recoded to NA according to the codebook.
Levels of categorical variables that are empty were removed.



### Data transformation --—--

# Simplify the column for the year to each data frame
a2018%wave <- 2018
a2019¢wave <- 2019
a2020%wave <- 2020
a2021$wave <- 2021

# Create a long dataset
datal. <- bind_rows(a2018, a2019, a2020, a2021)

# Transform the data
datal <- datal %>%
# remove variables gebjaar, lftdcat and lftdhhh (are redundant considering "leeftijd")
# Herkomstgroep (origin) has too many missing
# sted (urban) is very weakly related to the income variables
# oplmet and oplzon are redundant considering strong releation oplcat and income
# brutoink_f, nettoink_f, nettoinc, doetmee, werving, simpc is not relevant for imputation
select(-c("gebjaar", "lftdcat", "nohouse_encr", "herkomstgroep", "sted", "oplmet", "oplzon",
"doetmee", "nettoink_f", "netinc", "brutoink_f", "nettohh_f", "brutohh_f", "werving",
"simpc", "1ftdhhh")) %>%
# Fixz the wvariable types
mutate(nettoink = as.character(nettoink),
nettoink = as.numeric(nettoink),
brutoink = as.character (brutoink),
brutoink = as.numeric(brutoink)) %>7
# filter(nettoink < 15000) }>) # This was done by the original imputation as well (can be removed)
# Fiz the missing / don't know so that they are NA (according to codebook)
# brutoink: 13 I don't know, 15 Unknown (missing)
# nettoink: 13 I don't know, 14 Prefer not to say, 15 Unknown (missing)
mutate (brutoink = ifelse(brutoink == 13 | brutoink == 15, NA, brutoink),
nettoink = ifelse(nettoink == 13 | nettoink == 14 | nettoink == 15, NA, nettoink))

# remove the levels of categorical wvariables that are empty
dataL$aantalki <- droplevels(dataL$aantalki)
datal$woning <- droplevels(datal$woning)
datal$woonvorm <- droplevels(dataL$woonvorm)
datal$burgstat <- droplevels(dataL$burgstat)
dataL$positie <- droplevels(datalL$positie)
dataL$nettocat <- droplevels(dataL$nettocat)
dataL$brutocat <- droplevels(dataL$brutocat)
datalL$aantalhh <- droplevels(dataL$aantalhh)
dataL$aantalki <- droplevels(dataL$aantalki)
dataL$oplcat <- droplevels(datalL$oplcat)
dataL$geslacht <- droplevels(dataL$geslacht)

2.2 Stepwise approach

Building on what was previously done by the LISS panel, a stepwise approach to impute more missing values
can be adopted. This approach is organised in several steps:

1. Implementing the initial LISS imputation procedure, detailed previously, to perform imputations in
cases where gross income is provided but not net income. There is little reason to believe a better
formula can be found in such cases, although its derivation could theoretically be verified through



replication.

2. Using the row-and-column or Little and Su method to impute missing values for units where at least one
observation in a different wave is available. This builds upon the previous step by including longitudinal
information from different waves in the imputation process.

3. Using multiple imputation with FCS to impute all item missing values that were not imputed in the
previous steps.

2.2.1 Implementing the LISS procedure

Given the provided formula, the values in nettoink_f can be replicated using the following:

# Reshape the data to wide format
dataW <- datal %>’ reshape(

idvar = "nomem_encr", # spectify the id column
timevar = "wave'",
direction = "wide"

) %> select(nomem_encr, sort(tidyselect::peek_vars())) #orders columns alphabetically

# Clean up wvariable names: replace dots with underscores
colnames(dataW) <- gsub("\\.", "_", colnames(dataW))

# List of dataset names
dataset_names <- c("a2018", "a2019", "a2020", "a2021")

# Loop through each dataset

for (dataset_name in dataset_names) {
# Access the current dataset
data <- get(dataset_name)

# Create new variables for the imputation formula
data$nettoink_f <- as.numeric(as.character(data$nettoink_ f))
data$nettoink <- as.numeric(as.character(data$nettoink))
data$brutoink <- as.numeric(as.character(data$brutoink))
data$lngross <- log(as.numeric(as.character(data$brutoink)))
data$lngross2 <- data$lngross”2

data$age65 <- as.numeric(ifelse(data$lftdcat == '65 years and older', 1, 0))
data$lead <- as.numeric(ifelse(data$positie == 'Household head', 1, 0))
data$employ <- as.numeric(ifelse(data$belbezig == 'Paid employment', 1, 0))

# Create the imputation formula

formula_terms <- c(
"0.5059772716 * -1",
"1.2084397177 * data$lngross",
"0.0246538113 * -1 * data$lngross2",
"0.0158967975 * data$age65 * data$lngross",
"0.0263173212 * data$lead",
"0.2265126592 * data$employ",

"0.0300171994 * -1 * data$employ * data$lngross"

# Impute missing values for nettoink using the specified formula
formula <- paste(formula_terms, collapse = " + ")

data$nettoink_im <- ifelse(
is.na(data$nettoink), eval(parse(text = paste("exp(", formula, ")", sep = ""))),



as.numeric(as.character(data$nettoink))

# Store the imputed values in datal/ based on matching nomem_encr
col_name <- pasteO('nettoink_im_', substr(dataset_name, 2, 5))

for (i in 1:nrow(dataW)) {
nomem_encr_val <- dataW[i, 'nomem_encr']

if (nomem_encr_val %in), data$nomem_encr) {
imputed_value <- data$nettoink_im[data$nomem_encr == nomem_encr_val]
dataW[i, col_name] <- imputed_value
}
}
}

# Reordering the variables
dataW <- dataW 7>}, select(nomem_encr, sort(tidyselect::peek_vars())) #orders columns alphabetically

2.2.2 Using data from other years and the Little & Su method

2.2.2.1 Motivation A common method for imputation where longitudinal data is concerned is the Last
observation carried forward (LOCF) method, where the last observed value of a variable is ‘carried forward’ to
the current year. A major advantage of the LOCF method is that it maximizes the number of observations at
any given year (Liu, 2016). In contrast, a drawback is that this may not make sense with the data, especially
in situations where missing completely at random (MCAR) cannot be assumed. This is of particular concern
in clinical trials where attrition may be due to participants’ health deteriorating and thus imputing by LOCF
does not provide adequate information on the participants’ current situation (Liu, 2016). In the context of
the LISS panel, this may be a case of participants being less likely to answer the question on net income if it
has varied considerably from one month to the next. Furthermore, as with other single-point imputation
methods, such as mean imputation, the LOCF method introduces bias in statistics of interest (Lachin, 2016).

The relevance of the LOCF procedure to the current problem can be assessed using the complete cases to
measure the distance between the observed and predicted values imputed using the LOCF method. A t-test
can then be conducted to test the hypothesis that the net income from one year to the next does not change.
This can be performed on the data from 2019 to 2021 but not 2018 since no prior data was used in this
project. Should the LOCF procedure prove to be useful, data from previous years could be retrieved online
to impute values from 2018 in a similar way.

# Initialise vector for t wvalues
tval <- matrix(NA, nrow = 3, ncol = 2)

for (target_year in 2018:2021){
# Identify the net income variable for the current year
target_var <- pasteO('"nettoink_im_", as.character(target_year))

# Identify the net income wvariable for the previous year
target_last <- target_year - 1
target_varlast <- pasteO('"nettoink_im_", as.character(target_last))

if (target_varlast %in’ names(dataW)){
tval[as.numeric(target_year) - 2018, 1] <- t.test(dataW[,target_var],
dataW[,target_varlast])$statistic # Calculate the
tval[as.numeric(target_year) - 2018, 2] <- t.test(dataW[,target_var],
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dataW[,target_varlast])$p.value # Calculate the p

# Format column and Tow names

tval <- as.data.frame(tval)

row.names (tval) <- c('2019', '2020', '2021")
colnames(tval) <- c('t', 'p-value')

# Print the result
tval

## t p-value
## 2019 0.9419858 0.34621226
## 2020 2.0847098 0.03710879
## 2021 1.1589418 0.24649412

The hypothesis that net household income does not change from one year to the next cannot be rejected for
2019 and 2021 but is rejected for 2020. This is probably due to the Covid-19 pandemic that lasted through
2020 and 2021, which was accompanied by a decline in economic activity and resulted in many people losing
their source of income (Han et al., 2020). Although this makes the use of LOCF harder to justify, using
data from previous years may still be possible if trends are similar across participants. To examine this,
cross-validation can be used to evaluate whether a linear model is successful at predicting net income values
from the values of other years.

# Set the number of folds for cross-validation
num_folds <- 5

# Initialize a data frame to store results
cv_results <- data.frame(
Year = character(),
Fold = integer(),
Adj_R_Squared = numeric(),
stringsAsFactors = FALSE

# Loop through each year

for (target_year in c("2018", "2019", "2020", "2021")) {
# Identify the net income wariable for the current year
target_var <- pasteO("nettoink_ ", target_year)

# Identify the predictor vartables for the current year
predictor_vars <- setdiff(pasteO('"nettoink_", c("2018", "2019", "2020", "2021")), target_var)

# Create a formula for regression dynamically
formula <- as.formula(paste(target_var, "~", paste(predictor_vars, collapse = " + ")))

# Create a data frame with only complete cases for the current year
complete_data <- na.omit(dataW[, c(target_var, predictor_vars)])

# Set up k—fold cross-validation
folds <- createFolds(complete_datal[target_var]], k = num_folds)

# Loop through each fold
for (fold in 1:num_folds) {
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# Extract the indices for training and testing data
train_indices <- unlist(folds[-fold])
test_indices <- unlist(folds[fold])

# Subset the data for training and testing
train_data <- complete_data[train_indices, ]
test_data <- complete_data[test_indices, ]

# Save the observed wvalues for the current year
observed_values <- test_datal[[target_var]]

# Fit the linear regression model
1m_model <- 1lm(formula, data = train_data)

# Predict the "missing" wvalues using the regression model
predicted_values <- predict(lm_model, newdata = test_data)

# Calculate the adjusted R-squared
adj_r_squared <- summary(lm_model)$adj.r.squared

# Append the results to the cv_results data frame
cv_results <- rbind(cv_results, data.frame(Year = target_year, Fold = fold,
Adj_R_Squared = adj_r_squared))

# Use tidyr's spread function to pivot the data frame
cv_results_pivot <- spread(cv_results, Fold, Adj_R_Squared)

# Print the pivoted results
print(cv_results_pivot)

##  Year 1 2 3 4 5
## 1 2018 0.9758068 0.9764595 0.9768109 0.9772475 0.9338912
## 2 2019 0.9809361 0.9798790 0.9817041 0.9853360 0.9494178
## 3 2020 0.9761449 0.9275732 0.9771566 0.9751343 0.9847891
## 4 2021 0.9662247 0.9668287 0.9199999 0.9743405 0.9662566

The adjusted R? is high for each fold and year, indicating that a model that predicts net income based on
net income from other years is adequate for imputation. Thus, although the LOCF method may be limited
and ill-fitted given the years the data was collected in, other imputation models based on previous data are
the most straight-forward way of improving on the LISS imputation procedure.

2.2.2.2 Little & Su Method Implementation The Little & Su method consists of determining a
column effect for each wave, a row effect for each unit, and a residual effect based on the nearest neighbour
matching for each missing value. Consequently, it uses both cross-sectional trend information as well as
individual longitudinal information into account in the imputation process and includes a stochastic component
in the process by adding the residual. The imputed values are a product of the column effect, row effect, and
residual. These values were calculated using the equations provided in a paper on longitudinal imputation
methods by Westermeier and Grabka (Westermeier & Grabka, 2016). These equations were then cross-checked
in a different technical paper by Mullan et al. on the imputation strategies used for imputing income in the
LSAC, including the Little and Su approach (Mullan et al., 2015). These equations are as follows:
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where y;; is the income of the nearest neighbour [ and r; the row effect of the nearest neighbour I. The
nearest neighbour is found by reordering the data based on the calculated row effect. Finally, the imputed
value is calculated by multiplying the column effect, row effect and residual term for each missing value.

One of the limitations of the Little & Su method is that an individual’s missing value(s) can be only imputed
if at least one non-missing value has been observed in one of the different waves. During the implementation
of the method on the LISS panel data, we found that missing values within units with a calculated row effect
of 0 could not be imputed as well. This was the case in instances where an individual had at least one missing
value in a wave and an income value of 0 in the other waves.

# smaller dataset with income data and to be imputed columns
dataW_inc <- dataW %>%
select(nettoink_2018, nettoink_2019, nettoink_2020, nettoink_2021) %>%
mutate(id = row_number()) %>%
relocate(id) %>%
add_column(nettoink_2018_imp = NA,
nettoink_2019_imp NA,
nettoink_2020_imp = NA,
nettoink_2021_imp = NA)
k <- 4 # number of waves

# create separate df for reordering
LS <- dataW_inc[, 1:(k+1)]

# calculate column effect for each wave

column_effects <- rep(0, k)

for(i in 1:length(column_effects)){
yt <- mean(dataW_inc[,i+1], na.rm=T) # mean income for each wave
yk <- sum(colMeans(dataW_inc[,2:(k+1)], na.rm=T))
column_effects[i] <- (k * yt) / yk

}

# calculate row effect for each row
row_effects <- rep(0, nrow(dataW_inc))
for(i in 1:length(row_effects))q{
m <- sum(!is.na(dataW_inc[i, 2:(k+1)])) # number of waves each person was in
row_effects[i] <- (1/m) * sum((dataW_inc[i, 2:(k+1)] / column_effects), na.rm=T)
}

# order responses by row effects
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LS <- LS %%
mutate(row_effect = row_effects) %>%
arrange (row_effect)

# determine complete case with highest row effect
highest_complete <- LS %>J, na.omit() %>% filter(row_effect == max(row_effect)) >/ select(row_effect)

# start imputation loop (rows)
for(i in 1:nrow(dataW_inc)){

# check if row has NA wvalues and at least 1 observation
mna <- sum(is.na(dataW_inc[i, 2:(k+1)])) # number of NA's per person
if(mna > 0 & mna < k){

# find row id and corresponding row effect in LS ordered data
LS_row <- which(LS$id == dataW_inc[i, 1])
row_effect <- LS[LS_row, 'row effect']

# find previous complete case
prev_row_effect <- NA
prev <- 1
while(is.na(prev_row_effect) & LS_row != 1){
prev_row <- LS[LS_row - prev,]
if (sum(is.na(prev_row[2: (k+1)])) == 0){
prev_complete <- prev_row
prev_row_effect <- prev_row['row_effect']
}
prev <- prev + 1

3

# find next complete case
next_row_effect <- NA
nex <- 1
while(is.na(next_row_effect) & row_effect < highest_complete){
next_row <- LS[LS_row + nex,]
if (sum(is.na(next_row[2:(k+1)])) == 0){
next_complete <- next_row
next_row_effect <- next_row['row _effect']
¥
nex <- nex + 1

3

# determine nearest complete case

if (LS_row == 1){
nearest_row_effect <- next_row_effect
nearest_complete <- next_complete

} else if(row_effect > highest_complete) {
nearest_row_effect <- prev_row_effect
nearest_complete <- prev_complete

} else if ((next_row_effect - row_effect) < (row_effect - prev_row_effect)){
nearest_row_effect <- next_row_effect
nearest_complete <- next_complete

} else {
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nearest_row_effect <- prev_row_effect
nearest_complete <- prev_complete

3

# loop over columns and check for NA wvalues
for(j in 2:(k+1)){
if(is.na(dataW_inc[i,j]1)){

# assign residual term from nearest complete case
nearest_inc <- nearest_complete[j] # income of nearest complete case in same wave
resid <- nearest_inc / (nearest_row_effect * column_effects[j-1])

# impute missing value (column effect * row effect * residual)
imputed_value <- row_effect * column_effects[j-1] * resid
dataW_inc[i, j+k] <- imputed_value

# set NaN imputed values to NA
dataW_inc[sapply(dataW_inc, is.nan)] <- NA

The table below shows the number of values that were imputed with the Little & Su method for each year. It
also shows the total number of imputed values up to the this step of the stepwise approach and the number
of values that are still missing.

## Number of imputed and remaining missing values per year

## 2018 2019 2020 2021
## Imputed values in the last step 1884 2666 1671 2352
## Total imputed values 1896 2676 1681 2360
## Remaining missing values 15561 1803 1494 1658

The graphs below show the density plots for the net income variable ‘nettoink’ in each year, where the blue
line represents the original observed values and the red line the imputed values. In each year, the number of
imputed values with a net income of 0 is relatively low compared to the number of observed values with a net
income of 0. Consequently, the relative number of imputed values with a net income above 0 is considerably
higher. This can also be seen in the accompanying table, which shows that the median income is slightly
increased and the mean income is considerably increased when comparing the data after the Little & Su
imputation with the data from after the LISS imputation. This could be an indication of overestimation of
income, where the implemented Little & Su method has difficulties with the imputation of 0-value incomes.
During the implementation of the method, we found that missing values within units with a combination of
0-values and missing values could often not be imputed due to the resulting 0-value row effect. However, it
may also be the case that many of the missing values come from individuals that did not know their net
income at the time of the survey, possibly resulting in a higher number of nonzero imputed values. Another
consideration is that it may be possible that the missing values are distributed similarly over the net income
variable as they are in the German SOEP, where missing values are most prevalent on the higher end of the
income distribution (Frick & Grabka, 2014). However, with the LISS panel data currently available to us, we
cannot make any conclusions on whether the Little & Su method has overestimated income or whether the
imputations are in line with expectations.
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Density plot of the observed values (blue) and imputed values (red) for 2(
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## # A tibble: 4 x 9
##  Statistic "LISS 2018 “L&S 2018 °"LISS 2019 “L&S 2019 “LISS 2020° “L&S 2020°

## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 median 1250 1300 1250 1421. 1400 1480
## 2 mean 1354. 1439. 1393. 1514. 1471. 1545.
## 3 missing 3427 1551 4456 1803 3153 1494
## 4 nonmissi~ 10008 11884 8979 11632 10282 11941
## # i 2 more variables: “LISS 2021° <dbl>, “L&S 2021° <dbl>

2.2.3 Imputing the remaining missing values with multiple imputation

After the two previous steps, there remains missing values for participants that either provided net income on
none of the years or only ever provided 0 as their net household income. The number of remaining missing
values for each year can first be tabulated.

## Remaining missing values per year, including and excluding unit non-response

##  Year Missing_Values_Including Missing_Values_Excluding

## 1 2018 15651 627
## 2 2019 1803 567
## 3 2020 1494 654
## 4 2021 1658 583

Since the aim of the current project is to correct for item non-response, the number of remaining missing
values per year that can plausibly be imputed are in the right column that excludes unit non-response. This
is also because imputation using longitudinal data was performed in the previous step, using the Little & Su
method. This final step aims at using cross-sectional data to impute some of the remaining missing data, for
which neither gross nor net household income is available. As such, the initial LISS imputation procedure
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cannot be used as it relies on gross income data. This step can however be viewed as an extension of it, that
is alluded to in the panel documentation but was not seen as a ‘quick solution’. In order to identify variables
for imputation, missing counts for the remaining missing values can be tabulated.

#Transform the data by removing all wvariables unusable for prediction

data2 <- dataW %>% select(-c("nomem_encr", "brutocat_2018", "nettocat_2018", "nettoink_2018", "nettoink
"brutocat_2019", "nettocat_2019", "nettoink_2019", "nettoink im 2019",
"brutocat_2020", "nettocat_2020", "nettoink_2020", "nettoink im 2020",
"brutocat_2021", "nettocat_2021", "nettoink 2021", "nettoink_im_ 2021",
"brutoink_2018", "brutoink_2019", "brutoink_2020", "brutoink_2021"))

#Inittalize table to store missing values
missing_count <- matrix(NA, nrow = 4, ncol = 12)

for (year in 2018:2021) {
# Extract the net income wvariable for the current year
column_for_year <- grep(pasteO('nettoink_im2_", year), colnames(data2), value = TRUE)

# Choose only selected year

data3 <- data2[, grepl(year, names(data2))] # Check columns from selected year only

cnt_na <- apply(data3, 1, function(z) sum(is.na(z))) # Count the number of NAs in each Tow
rows_with_missing <- which(cnt_na < 11) # Find rows from the correct year

# Subset the data to obtain data from only one dataset
data3 <- data2[rows_with_missing, grepl(year, names(data2))]

# Count the number of missing values per column
na_count <-sapply(data3, function(y) sum(length(which(is.na(y)))))
missing_count[year - 2017,] <- na_count

# Naming the columns and Tows
missing_count <- as.data.frame(missing_count) # Transforming the output

# Retrieve original wvariable names from the loop
colnames(missing_count) <- sub("_2021", "", names(na_count))

# Naming the rows
rownames (missing_count) <- 2018:2021

# Displaying the table
missing_count[,-12] # Remove net income from the output

## aantalhh aantalki belbezig burgstat geslacht leeftijd oplcat partner
## 2018 0 0 4 0 0 0 549 0
## 2019 0 0 3 0 0 0 499 0
## 2020 0 0 0 0 0 0 611 0
## 2021 0 0 0 0 0 0 580 0
## positie woning woonvorm
## 2018 130 20 0
## 2019 133 22 0
## 2020 122 15 0
## 2021 140 21 0
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For performing imputation using linear or stochastic regression, Hardt et al. note that utilising too many
auxiliary variables may lead to an over-parameterisation of the imputation model and thus introduce bias,
whilst simultaneously lengthening processing times (Hardt et al., 2012). Hence, since there are comparatively
a lot of missing values on the variables oplcat (level of education) and positie (position in the family) for the
remaining missing data, they are excluded from the imputation. In the case of cross-sectional imputations on
longitudinal data, multiple imputation has been shown to yield values close to true parameter values (Ferro,
2014). Including variables highly correlated with item missingness also reduces bias from differences between
MAR and MNAR (Ferro, 2014). Since most of the remaining items have been shown in section 1.2 to be
correlated to the missingness on net income, it was decided here to attempt to impute the few remaining
missing values using multiple imputation. This is done for each year separately to avoid introducing error from
the repeated-measure structure of the data. Performing 2 iterations is chosen here for ease of computation but
could be extended to 20 to conform with the minimum suggested in the literature when looking for standard
error estimates (Hippel?). Five imputed datasets are computed, in line with recommendations from the
literature that the number of iterations should match the average proportion of missing data (Bodner, 2008).
All imputations were performed with the mice package, developed by van Buuren & Groothuis-Oudshoorn
(van Buuren & Groothuis-Oudshoorn, 2011).

# Removing variables
data3 <- data2 %>%
select(-c("oplcat_2018", "positie_2018",
"oplcat_2019", "positie_2019",
"oplcat_2020", "positie_2020",
"oplcat_2021", "positie_2021"))

for (year in 2018:2021) {
# Extract the net income wvariable for the current year
column_for_year <- grep(pasteO('"nettoink_im2_", year), colnames(data3), value = TRUE)

# Choose only selected year
data4 <- data3[, grepl(year, names(data3))] # Check columns from selected year only

cnt_na <- apply(data4, 1, function(z) sum(is.na(z))) # Count the number of NAs in each row

rows_with_missing <- which(cnt_na < 9) # Find rows from the correct year panel

# Subset the data to obtain data from only one dataset
data4 <- data3[rows_with_missing, grepl(year, names(data3))]

# Create the imputations
imputed_data <- mice(data4, m = 5, maxit = 2, seed = 54433, print = FALSE)

# Extract the imputed datasets
imputed_datasets <- complete(imputed_data, "long", include = TRUE)

# Create wvariables to store the imputations and imputed datasets
imputed_data_name <- pasteO("imputed_data_", year)

imputed_datasets_name <- pasteO("imputed_datasets_", year)

# Assign the results to the newly created wvariables on each loop
assign(imputed_data_name, imputed_data)
assign(imputed_datasets_name, imputed_datasets)

}

This code has thus imputed every value that was missing from the original data sets. A more in-depth
discussion of multiple imputation methods, including arguments that the mice function can take, is presented
in the next section but a quick glance at plots of imputed against observed data reveals that the new values
for net household income are plausible, where the observed data is in blue, the imputed is in red.
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2.3 Multiple imputation Approach
2.3.1 Secondary Data Pre-Processing

Following the initial primary data pre-processing, we conducted additional data pre-processing to optimize
the dataset for the subsequent multiple imputation process. This step was essential given the dataset’s size
and the computational complexity associated with imputing categorical variables using algorithms such as
“polyreg” and “polr.”

The variables “aantalki” (Number of living-at-home children in the household) and “aantalhh” (Number
of household members) underwent transformation from character string entries to numeric values. This
conversion significantly reduced computation time, as the “pmm?” algorithm runs more efficiently on numeric
values compared to the “polr” algorithm on ordinal variables.

# Transforming the categorical wariables "aantalki" and "aantalhh" to continuous

# changing the character strings to numeric values for variable aantalk?
datal$aantalki <- as.character(dataL$aantalki)

with "None" = 0

with "One child" = 1

with "Two children" = 2

with "Three chtldren” = 3

with "Four children" = 4

with "Five children" = 5

with "Six children" = 6

H W OWH R R KRR

datal$aantalki[datalL$aantalki == "None"] <- O
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datal$aantalki[datalL$aantalki == "One child"] <- 1

datalL$aantalki[datalL$aantalki == "Two children"] <- 2
datal$aantalki[datalL$aantalki == "Three children"] <- 3
datal$aantalki[datal.$aantalki == "Four children"] <- 4
datal$aantalki[datalL$aantalki == "Five children"] <- 5
datalL$aantalki[datalL$aantalki == "Six children"] <- 6

datal$aantalki <- as.numeric(datalL$aantalki) # Convert to numeric

# Make a binary variable from aantalki indicating whether or not someone has children (simplied wvariabl
# datal <- datal %>}
# mutate(has_children = tfelse(aantalk: == 0, 0, 1)) # O = no children, 1 = has children

# Do the same for wariable aantalhh
datal$aantalhh <- as.character(datalL$aantalhh)

# with "One person" = 1

# with "Two persons”" = 2

# with "Three persons" = 3

# with "Four persons”" = 4

# with "Five persons”" =5

# with "Six persons" = 6

# with "Seven persons” =7

# with "Eight persons" = 8

# with "Nine persons or more" = 9
datal$aantalhh[datal$aantalhh == "One person"] <- 1
dataL$aantalhh[datal$aantalhh == "Two persons"] <- 2
dataL$aantalhh[datal$aantalhh == "Three persons"] <- 3
dataL$aantalhh[datal$aantalhh == "Four persons"] <- 4
dataL$aantalhh[datal$aantalhh == "Five persons"] <- 5
datal$aantalhh[datal$aantalhh == "Six persons"] <- 6
dataL$aantalhh[datal$aantalhh == "Seven persons'"] <- 7
dataL$aantalhh[datal$aantalhh == "Eight persons"] <- 8
dataL$aantalhh[datal$aantalhh == "Nine persons or more"] <- 9

datal.$aantalhh <- as.numeric(datal$aantalhh) # Convert to numeric

Subsequently, to address sparsity and cardinality issues in the categorical variables “belbezig” and “burgstat,”
we collapsed categories based on certain criteria. First, “belbezig” (Primary occupation) underwent cate-
gorization, where categories with proportions below a 10% threshold were collapsed. This process resulted
in four refined levels: “Attends school or is studying,” “Is pensioner,” “Paid employment,” and “Others.
Second, in the case of “burgstat” (Civil status), the categories “Divorced” and “Separated” were merged
into a unified category named “Divorced or separated.” This amalgamation was informed by a synthesis of
theoretical and empirical factors, as both categories exhibited analogous relationships with net income.

)

### Dealing with high cardinality in belbezig and burgstat by collapsing categories
# table(dataL$belbezig)
# prop.table(table(datal$belbezig)) * 100

## Any category has a percentage smaller than 10 is going to be into "others"

belbezig_percentages <- prop.table(table(dataL$belbezig)) * 100

categories_to_collapse <- names(belbezig_percentages[belbezig_percentages < 10])
dataL$belbezig_collapsed <- ifelse(datalL$belbezig ’in), categories_to_collapse, "Others", as.character(d
dataL$belbezig_collapsed <- factor(dataL$belbezig_collapsed)
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# table(dataL$belbezig collapsed) / length(datalL$belbezig collapsed) * 100 # Print the updated table of
# summary (aov(nettoink ~ belbezig_collapsed, datal)) # still significant result
# lm(nettoink ~ belbezig collapsed, datal) # still significant result)

### Combine divorced and separated into one level of burgstat
datal$burgstat_collapsed <- ifelse(dataL$burgstat %in)% c("Divorced", "Separated"), "Divorced or separat
dataL$burgstat_collapsed <- factor(dataL$burgstat_collapsed)

# summary(lm(nettoink ~ burgstat, datal))
# summary(lm(nettoink ~ burgstat_collapsed, datal)) # Practically no difference in wariance accounted f

# Remove the original wvariables
datal <- datal %>%
select(-belbezig, -burgstat)

Following these adjustments to categorical variables, we reshaped the data from a long to a wide format,
facilitating the multiple imputation procedure through the mice package.

# Reshape the data to wide format
dataW <- reshape(
data = datal,

idvar = "nomem_encr", # spectify the id column
timevar = "wave',
direction = "wide"

# Clean up variable names: replace dots with underscores
colnames(dataW) <- gsub("\\.", "_", colnames(dataW))

Finally, the representation of gender and age variables are simplified to prevent multicollinearity violations and
unnecessary clutter in the predictor matrix. A new variable, “geslacht,” was created by consolidating gender
information from any available year (2018 to 2021) to form a unified gender variable for each observation.
Additionally, a baseline age variable, “leeftijd_ 2018,” is generated based on the available data from the
respective years. The code utilizes conditional logic to assign the age value for each year. If the age information
is present, it is assigned accordingly. Otherwise, the age is imputed by subtracting a predetermined value
based on the temporal distance from the most recent year. It should be noted that after this procedure, both
variables had no missing values, removing the need for imputation.

# Simplifying the sex and age variables
dataW <- dataW %>%
# Create a single gender vartiable using whichever year is avatilable
mutate(geslacht = coalesce(geslacht_2018, geslacht_2019, geslacht_2020, geslacht_2021)) %>%
# Create a baseline age variable using whichever year ts available
mutate(leeftijd_2018 = case_when(
lis.na(leeftijd_2018) ~ leeftijd_2018,
lis.na(leeftijd_2019) leeftijd_2019 - 1,
lis.na(leeftijd_2020) ~ leeftijd_2020 - 2,
lis.na(leeftijd_2021) leeftijd_2021 - 3,
TRUE ~ NA_real_))

R

R

2.3.2 Covariate exploration

In the preliminary covariate exploration outlined in the interim report, we employed violin plots and conducted
pairwise correlations. These yielded important insights into the relatedness to the net income variable. We
first plotted the missingness across potential categorical variables to exclude any that was associated with too
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much missingness. First, it became clear that approximately 7% of values was missing across all categorical
variables. On top of that, a visual inspection revealed that the variable “herkomstgroep” (i.e., origin)
contributed to about 30% additional missing values. To prevent complications with dealing with a lot of
missingness in a categorical variable, this variable was excluded from further analysis. To check the suitability
of categorical variables for the imputation model, we plotted the distribution of net income for each level of
the categorical variable of interest. Violin plots can be insightful for exploring the distribution of a continuous
variable across different levels of a categorical variable. By comparing the shapes of the violins, you can
quickly assess whether there are significant differences in the distributions. The extent to which the violins
are separated from each other provides an indication of how well the categorical variable differentiates the
continuous variable. A clear separation suggests that the categorical variable may be a good covariate.
Relatively small differences between the levels of the independent variable were identified for the variables
already excluded variable origin and the variables household head living with a partner and urban character.
Consequently, these variables were excluded from the imputation model. Moderate differences were found for
gender, number of household members, number of living-at-home children, civil status, domestic situation,
type of dwelling, and primary occupation. From these it can be concluded that men have a greater net
income than women, that having more household members is associated with lower income, that having
children is associated with lower income, that being married is associated with higher income, that living
with children is associated with lower income, that living in a rental property is associated with lower income,
and that being employed is associated with higher income. Great differences were found for position within
the household: household heads and unwedded partners tend to earn the highest income. All variables with
moderate to large differences were included in the imputation model.

Additionally, ANOVAs were utilized to explore the relationship between categorical variables and net income,
while multiple linear regression models were fitted to investigate the relationship between continuous variables
and net income. To gain further insights into the association between variables and net income, along with
its associated missingness, we generated plots depicting variables against both the net income variable and
its corresponding missingness. The findings from these analyses informed the selection of variables for the
subsequent imputation model.

In the context of imputing net income, the LISS data offered several suitable continuous predictors. Through
the examination of linear regression models, pairwise correlations, and unique variance considerations, we
identified key variables: “brutoink,” “aantalki” (converted), and “aantalhh” (converted). For categorical
variables, the selected set included: “leeftijd,” “geslacht,” “oplcat,” “burgstat” (collapsed), “woning,” “belbezig”
(collapsed), and “partner.”

# Check the relationship between age and income

summary (lm(nettoink ~ leeftijd, data = datal)) # Exzplains 4/ of wvariance

# ... nettoink and aantalks:

summary (lm(nettoink ~ aantalki, data = datal)) # Ezplains 2/ of variance

plot(nettoink ~ aantalki, data = datal)

summary (lm(nettoink ~ has_children, data = datal)) # Ezplains a little less than 2/ of wariance

# ... nettoink and aantalhh

summary (1lm(nettoink ~ aantalhh, data = datal)) # Ezplains 2/ of wvariance

plot(nettoink ~ aantalhh, data = datal)

summary (lm(nettoink ~ lives_alone, data = datal)) # Ezplains a little less than 1/ of wvariance (more in

# Check the multiple linear regression model
summary (lm(nettoink ~ brutoink + leeftijd + aantalki + aantalhh, data = datal)) # aantalk? and aantalhh

# Now tnclude all variables that I also want to use for the actual imputation model
summary (lm(nettoink_2018 ~ brutoink_2018 + leeftijd_2018 + has_children_2018 + aantalhh + geslacht + be

# Imputation model using continuous income variables (gross + net)

cont_var_2018 <- 1lm(nettoink_2018 ~ nettoink_2019 + nettoink_2020 + nettoink_2021 + brutoink_2018 + bru
summary (cont_var_2018)
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cont_var_2019 <- lm(nettoink_2019 ~ nettoink_2018 + nettoink_2020 + nettoink_2021 + brutoink_2018 + bru
summary (cont_var_2019)
cont_var_2020 <- lm(nettoink_2020 ~ nettoink_2018 + nettoink_2019 + nettoink_2021 + brutoink_2018 + bru
summary (cont_var_2020)
cont_var_2021 <- lm(nettoink_2021 ~ nettoink_2018 + nettoink_2019 + nettoink_2020 + brutoink_2018 + bru
summary (cont_var_2021)

# In cases where the gross income and net income are both non-missing, a linear model consisting of the
# of the other years accounts for more than 997 of the wartance in the net income of the year in quest:
# the net income of other years or the gross income s available, adding more predictors may be pointle

# Imputation model using continuous income variables (net)

cont_var_2018 <- lm(nettoink_2018 ~ nettoink_2019 + nettoink_2020 + nettoink_2021, data = dataW)
summary (cont_var_2018)

cont_var_2019 <- 1lm(nettoink_2019 ~ nettoink_2018 + nettoink_2020 + nettoink_2021, data = dataW)
summary (cont_var_2019)

cont_var_2020 <- lm(nettoink_2020 ~ nettoink_2018 + nettoink_2019 + nettoink_2021, data = dataW)
summary (cont_var_2020)

cont_var_2021 <- lm(nettoink_2021 ~ nettoink_2018 + nettoink_2019 + nettoink_2020, data = dataW)
summary (cont_var_2021)

# In cases where the met income of all years are nmon-missing, a linear model where a person's met incom
# by their net income in the other years accounts for more than 967,/97) of the wariance in the net inco

# Plot cardinalities of categorical wvariables
categorical _vars <- c(”geslacht”, "oplcat", "partner", "brutocat", "mnettocat",
"positie", "burgstat", "woonvorm", "woning", "belbezig")

plot_list <- list()

for (var in categorical_vars) {

p <- ggplot(datal, aes(x = !!sym(var))) +
geom_bar (fill = "skyblue", color = "black") +
labs(title = paste("Barplot of", var),

X = var,
y = "Count") +
theme_minimal ()

plot_list[[var]] <- p
}

combined_plot <- grid.arrange(grobs = plot_list, ncol = 4)
print(combined_plot)
### Make a plot showing the missingness for variable "nettoink" across different levels of categorical
for (i in 1:length(categorical_vars)) {
# Selecting the categorical variable for analysis

categorical_variable <- categorical_vars[i]

# Creating a subset of the data with selected variables
subset_data <- dataL[c("nettoink", categorical_variable)]
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# Creating an indicator variable for missingness in 'nettoink'’
subset_data$nettoink_missing <- is.na(subset_data$nettoink)

# Calculating the percentage of missingness and non-missing data

missingness_summary <- subset_data 7>’
group_by(!!as.symbol(categorical_variable), nettoink_missing) %>%
summarise(count = n()) %>%
group_by(!!as.symbol(categorical_variable)) %>
mutate(percentage = count / sum(count) * 100)

# Plotting combined bar chart and printing it

print (ggplot (missingness_summary, aes(x = !l!as.symbol(categorical_variable), y = percentage, fill = f
geom_bar(stat = "identity", position = "stack") +
labs(title = paste("Missingness in nettoink Across", categorical_variable),
X = categorical_variable, y = "Percentage") +
scale_fill_manual (values = c("TRUE" = "darkred", "FALSE" = "lightgreen"), labels = c("Non-Mis:

theme_minimal())

### Check how high the scores are

# Create a bar plot
ggplot(datal, aes(x = oplcat, y = nettoink)) +

geom_bar(stat = "summary", fun = "mean", fill = "skyblue", position = "dodge") +
labs(title = "Nettoink Scores",
y = "Mean Nettoink Score") +

theme_minimal ()

2.3.3 Creating the Multiple Imputation Model

The generation of multiply imputed data involved an iterative approach. Initially, a rudimentary imputation
model was established. We then scrutinized diagnostic plots, such as traceplot, stripplot, and densityplot.
Subsequently, we followed a systematic procedure: 1) assessed warning logs, 2) fine-tuned specific parameters,
and 3) evaluated if these adjustments led to enhancements. This iterative cycle was repeated until we derived
the definitive version of the imputation model outlined in the subsequent steps.

2.3.3.1 Step 1: Data Preparation In this step, we selected all relevant variables for imputation,
including demographic information, income, and several categorical and continuous covariates across the
different years (see covariate exploration).

### Step 1: Prepare the data

# All years
allyears <- dataW %>%
select(leeftijd_2018,

aantalki 2018, aantalki_2019, aantalki_ 2020, aantalki_2021,
aantalhh_ 2018, aantalhh_ 2019, aantalhh 2020, aantalhh 2021,
brutoink_2018, brutoink 2019, brutoink_ 2020, brutoink_2021,
nettoink_2018, nettoink_2019, nettoink_2020, nettoink_2021,
# add the categorical wvariables (4 or less levels)
geslacht,
burgstat_collapsed_2018, burgstat_collapsed_2019, burgstat_collapsed_2020, burgstat_collapsed_
partner_2018, partner_2019, partner_2020, partner_2021,
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woning_ 2018, woning_ 2019, woning_ 2020, woning_ 2021,
# add the categorical wvariables (more than 4 levels)
# woonvorm_2018, woonvorm_2019, woonvorm_ 2020, woonvorm_ 2021,

belbezig_collapsed_2018, belbezig_collapsed_2019, belbezig_collapsed_2020, belbezig_collapsed_!

oplcat_2018, oplcat_2019, oplcat_2020, oplcat_2021,
# add the ID wariable
nomem_encr)

2.3.3.2 Step 2: Predictor Matrix Specification In this step, we constructed a predictor matrix
using the quickpred function, automatically specifying variables to be predicted and those to be excluded.
This function drastically speeds up the process of having to select predictors (e.g., having a partner) for the
imputation model for the predictors (e.g., number of children) used for imputation of the target variables
(i.e., net income). Through extensive exploration, we determined that setting mincor to 0.2 struck a balance,
providing an optimal number of predictors. This choice avoids oversimplification and overcomplication of
the model. Notably, the ID variable (nomem__ encr) was intentionally excluded from both the predictor and
predicted variables to maintain model integrity.

# make the predictor matriz (quickpred)
pred <- quickpred(allyears, mincor = 0.2)

# Also exclude nomem_encr (id variable) as predictor and to-be predicted
pred[, "nomem_encr"] <- 0
pred["nomem_encr",] <- 0

Subsequently, for each of the four years (2018-2021), we manually specified the predictors for the nettoink
variable. Among these, geslacht (sex), leeftijd_ 2018 (Age at baseline) and brutoink (2018, 2019, 2020, 2021;
gross income of each year) were used as predictors for each of the four years. In addition, for the net income of
a specific year (e.g., 2018), we selected the following variables of that corresponding year: oplcat (education),
aantalki (number of children), aantalhh (number of household members), burgstat_collapsed (urbanization),
“woning” (type of housing), “belbezig_ collapsed” (employment status). Last, we included the “nettoink” (net
income) variables of the remaining years. Last, for the “brutoink” variable of a specific year (e.g., 2018), we
removed the “brutoink” variables of the remaining years (e.g., 2019, 2020, 2021). This was done to avoid
multicollinearity that would otherwise occur.

### First: 2018 data

# Vartables to include as predictors for nettoink_2018

incl_predl <- c("oplcat_2018", "aantalki_2018", "aantalhh_2018", "geslacht",
"burgstat_collapsed_2018", "woning_2018",
"belbezig_collapsed_2018", "leeftijd_2018", "brutoink_2018",
"nettoink_2019", "nettoink 2020", "nettoink_2021",
"brutoink_2018", "brutoink 2019", "brutoink_2020", "brutoink 2020",

# Set all values itn the row to O
pred["nettoink_2018", ] <- 0

# Set these wvartables to 1
for (i in incl_predl) {

pred["nettoink_2018",i] <- 1
}

# Variables to exclude as predictors for brutoink_2018
excl_predl <- c("brutoink_2019", "brutoink_2020", "brutoink_2021")
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# Set these wartables to 0
for (i in excl_predl) {

pred["brutoink_2018",i] <- 0
}

### Second: 2019 data

# Vartables to include as predictors for nettoink_2019

incl_pred2 <- c("oplcat_2019", "aantalki_2019", "aantalhh_2019", "geslacht",
"burgstat_collapsed_2019", "woning_ 2019",
"belbezig_collapsed_2019", "leeftijd_2018", "brutoink_2019",
"nettoink_2018", "nettoink 2020", "nettoink_2021",
"brutoink_2018", "brutoink_2019", "brutoink_2020", "brutoink_2020",

# Set all wvalues in the row to O
pred["nettoink_2019", ] <- 0

# Set these wvartables to 1

for (i in incl_pred2) {
pred["nettoink_2019",i] <- 1

}

# Vartables to exclude as predictors for brutoink_2019
excl_pred2 <- c("brutoink_2018", "brutoink_2020", "brutoink_2021")

# Set these wariables to 0
for (i in excl_pred2) {

pred["brutoink_2019",i] <- 0
}

### Third: 2020 data

# Variables to include as predictors for nettoink_ 2020

incl_pred3 <- c("oplcat_2020", "aantalki_2020", "aantalhh_2020", "geslacht",
"burgstat_collapsed_2020", "woning_2020",
"belbezig_collapsed_2020", "leeftijd_2018", "brutoink_2020",
"nettoink_2018", "nettoink_2019", "nettoink_2021",
"brutoink_2018", "brutoink 2019", "brutoink_2020", "brutoink 2020",

# Set all values in the row to O
pred["nettoink_2020", ] <- 0

# Set these wartiables to 1

for (i in incl_pred3) {
pred["nettoink_2020",i] <- 1

}

# Variables to exzclude as predictors for brutoink_2020
excl_pred3 <- c("brutoink_2018", "brutoink_2019", "brutoink_2021")

# Set these wartables to 0

for (i in excl_pred3) {
pred["brutoink_2020",i] <- 0

29

"brutoink

"brutoink



### Fourth: 2021 data

# Variables to include as predictors for nettoink_ 2021
incl_pred4 <- c("oplcat_2021", "aantalki_2021", "aantalhh_2021", "geslacht",
"burgstat_collapsed_2021", "woning_2021",
"belbezig_collapsed_2021", "leeftijd_2018", "brutoink_2021",
"nettoink_2018", "nettoink_2019", "nettoink_2020",
"brutoink_2018", "brutoink_2019", "brutoink_2020", "brutoink_2020", "brutoink

# Set all values tn the row to O
pred["nettoink_2021", ] <- 0

# Set these wartables to 1
for (i in incl_pred4) {

pred["nettoink_2021",i] <- 1
}

# Vartables to exzclude as predictors for brutoink_ 2021
excl_pred4 <- c("brutoink_2018", "brutoink_2019", "brutoink_2020")

# Set these wvariables to 0
for (i in excl_pred4) {

pred["brutoink_2021",i] <- 0
}

2.3.3.3 Step 4: Method Specification In this step, we systematically define imputation methods for
different types of variables in our multiple imputation model. After exploring various estimation methods, we
opted for the default methods in mice for each scale type (Buuren, 2018), as they demonstrated superior
performance in our experimentation and fit the characteristics of our data very well. We started by
automatically generating a set of imputation methods for the selected subset. We then manually adjusted
these methods to ensure that they are appropriate for the variables in our dataset. First, for the binary
variables (e.g., partner) we used logistic regression (“logreg”). Second, for the ordered categorical (i.e.,
ordinal) variables we utilized the proportional odds model (“polr”). Third, for the unordered categorical
variables we employed polytomous logistic regression (“polyreg”). In the realm of multiple imputation, the
challenge of separation poses a significant concern for categorical variables (Albert & Anderson, 1984). This
issue can result in infinite estimates, leading to biased or unstable outcomes if not addressed adequately
(Buuren, 2018). The mice package’s three specified methods (“logreg”, “polr”, “polyreg”) employ a solution
to this technical problem by leveraging data augmentation. This approach mitigates the risk of infinite
estimates by adding pseudo-observations to the data with a negligible weight. Furthermore, as the likelihood
of encountering separation approaches zero with an expanding sample size, the presence of a substantial
dataset should effectively mitigate any concerns related to this issue (Albert & Anderson, 1984). In addition,
given that the number of events for each fitted parameter significantly surpasses the established threshold of
10, these methods are expected to contribute to a robust imputation process (Buuren, 2018) . Fourth, for
the continuous variables we employed predictive mean matching (“pmm”), as this method tends to yield
imputations that closely mirror the attributes of the observed data in large samples (Buuren, 2018). An
additional advantage of predictive mean matching over alternative methods, such as Bayesian linear regression
(“norm”), lies in its ability to generate realistic and plausible values. Utilizing a nearest neighbor hot-deck
approach, predictive mean matching ensures that the imputed values align with the observed data distribution.
In contrast, Bayesian linear regression may produce negative values for net income, which is both theoretically
implausible and inconsistent with the survey response distribution. Last, predictive mean matching does not
require the variables to be normally distributed, further contributing to the robustness by accommodating
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various data distributions.

# Make methods automatically
meth <- make.method(allyears)

# Binary variables: (logreg)

# geslacht and partner have all observations

meth[c("partner_2018", "partner_2019", "partner_2020", "partner_2021"
)] <- "logreg"

# Ordered categorical wvariables: (polr)

# oplcat, brutocat, nettocat

meth[c("oplcat_2018", "oplcat_2019", "oplcat_2020", "oplcat_2021"
)] <- "polr"

# Unordered categorical variables: (polyreg)

# burgstat, woonvorm, woning, belbezig

meth[c("woning_2018", "woning 2019", "woning 2020", "woning_ 2021",
"belbezig_collapsed_2018", "belbezig_collapsed_2019", "belbezig_collapsed_2020", "belbezig_collaj
"burgstat_collapsed_2018", "burgstat_collapsed_2019", "burgstat_collapsed_2020", "burgstat_collaj
"oplcat_2018", "oplcat_2019", "oplcat_2020", "oplcat_2021"
)] <- "polyreg"

# Continuous wvariables: (pmm)

# leeftijd, brutoink, nettoink

meth[c("brutoink_2018", "brutoink_2019", "brutoink_2020", "brutoink_2021",
"nettoink_2018", "nettoink 2019", "nettoink_2020", "nettoink 2021",
"aantalki_2018", "aantalki_2019", "aantalki_2020", "aantalki_2021",
"aantalhh_2018", "aantalhh_2019", "aantalhh_2020", "aantalhh_2021"
)] <~ "pmm"

2.3.3.4 Step 5: Perform Multiple Imputation We utilized the mice function to generate multiple
plausible datasets with imputed values, providing a robust framework for subsequent analyses. During model
building, we set the number of imputations (m) as well as the numer of iterations (maxit) to 5. In our final
model, we followed the guidelines of van Buuren (2018) and set the m to 20. Further increasing this value
would significantly extend computation time, a resource allocation that some argue may not yield worthwhile
benefits (Schafer, 1997). Additionally, we set the number of iterations (maxit) to 5. Empirical findings suggest
that a relatively low number of imputations is often sufficient to ensure the convergence of the imputation
model, as the introduction of noise in the multiple imputation by chained equations (MICE) algorithm
tends to accelerate the convergence process (Buuren, 2018). Last, a seed was established for reproducibility.
Subsequently, we thoroughly examined the imputed data for errors and warnings, successfully resolving all
issues in the final model.

# Impute the data (m = 20 imputations, seed = 123)
imp.allyears <- mice(allyears, pred = pred, meth = meth, seed = 123, maxit = 20, m = 5)
imp.allyears$loggedEvents # check for errors

2.3.3.5 Step 6: Inspect the Imputed Data We create plots to check convergence (traceplot), distri-
bution (stripplot), box-and-whisker plots (bwplot), and density plots (densityplot) for the imputed variables
across all years.

We created a traceplot to visually assess the convergence of the imputation process across all iterations. This
plot can aid in determining whether the imputation model has reached a stable state, if there is convergence,
which is said to be present when the different streams freely intermingle with one another, without definite
trends (Buuren, 2018). The traceplots indicate the presence of trends in the tracelines of the means of the
nettoink variables, especially in the earlier iterations. Namely, it could be observed that most streams run
parallel and largely remain where they start of (e.g., low). At the final iterations there seems to be more
convergence. This may suggest that increasing the number of iterations would improve the convergence.
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Similarly, the standarddeviations of the nettoink variables are also not without issues: there seems to be
substantial trends, which is most apparent in the 2020 variable.
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Figure 1: Traceplot

To evaluate the imputation quality, we generated Box-and-whisker plots and density plots to compare the
distribution of observed and imputed values for net income across different years. The Box-and-whisker plots
demonstrated that the distribution of the imputed values closely matches that of the imputed data, even
including the outliers. This is desirable, since extreme values are also real data (Buuren, 2018).

Because of the outliers, however, it has become more challenging to see the distribution of the lower and
also majority of values. Therefore, we created a second one to give more insight into the main part of the
distribution.

The kernel density plot below indicates that the distribution of observed and imputed values are closely
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alligned. In particular for the 2018 and 2019 variables. The discrepancy between the two distributions was

greater for the variables associated with the years 2020 and 2021.
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3 Discussion

3.1 Comparing results
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Figure 5: Netto Income Densityplot

3.1.1 Median Household Income

In order to compare the results of implementing the three different imputation methods on the LISS panel
data, we first look at the median net income at each year after (a part of) the missing values have been
imputed. The median net income after the stepwise imputation process is close to the median income from
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the LISS imputation process for each year, with a slightly lower value in 2018 in 2021, a higher value in
2019, and the same value in 2020. It should be noted that the median income from the stepwise process was
calculated by taking the mean of the different median incomes for each of the generated imputation models
(m = 5). Interestingly, we saw previously that the Little & Su method in the second step of the stepwise
approach resulted in a higher median income. This indicates that the final step in the stepwise approach, the
stochastic regression, had a relatively large number of low or zero-value income imputations and thereby
countered some of the overestimation of the Little and Su method. Ultimately, the stepwise imputation did
not have a large effect on median income compared to the original LISS imputation procedure.

3.1.2 Household income distribution across age

The income distribution across age can be plotted for the single imputation LISS procedure and for the pooled
stepwise multiple imputation method presented in this project. Only one of the two methods is presented in
order to illustrate the resulting variance. This way, outliers both for age and net household income can be
identified and trends amongst age groups can be easily analysed.

Income distribution across age for original imputations
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Income distribution across age for stepwise imputations
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There is a clear increase in higher income values for younger and older participants in the stepwise imputation
compared to the original LISS imputation. This is likely due to most missing values coming from these age
groups but perhaps also because the variables used in the final step were not accurate predictors. This may
however indicate that the stepwise imputations are improbable as the observed data shows less variation in
income between participants of the same age, as one would expect at identical stages of their life. The plot
also suggests an unlikely upward trend in household income in 2020 after the age of one hundred.

3.2 Limitations

It should be noted that the current investigation is associated with several limitations. Some of these have
to do with questionable values and a lack of documentation concerning the dataset. For instance, it is not
thoroughly explained why the authors chose to exclude values for net income that exceeded 15000 euros a
month. If these are indeed considered invalid values, deletion makes sense. However, if these are true values,
they should be included in the imputation model, which is what we opted for. Furthermore, during data
exploration we discovered that there were several values of age under the supposed threshold of 18. However,
it is unclear what this means (there is no elaboration in the codebook). While we at some point obtained a
model that yielded reasonable imputations, we would have liked to do more testing and comparisons. One of
the main issues here was the mere size of the dataset. The dataset is very large and the imputation process is
very time-consuming (e.g., the multiple imputation model with m = 20 took approximately 3 hours to run).
Not only this, but also the experience with crashing (R is terminated) after making plots made it difficult to
test more scenarios and have the opportunity to compare different these scenarios. This problem indicates
some of the limitations with applying the mice package to a dataset of this size. While we could simplify the
predictor matrix and exclude variables to deal with a smaller mice.mids object, doing so would negatively
affect the distribution of the imputed variables and the overall quality of the imputation model.
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4 Conclusion

The two methods presented in this project, stepwise and multiple imputation, highlight the difficulties faced
when trying to impute large amounts of missing data. Although they succeeded at imputing more values
than were originally imputed by the LISS panel, the new values demonstrate a higher variance in the median
and across age groups. The lengthy process of obtaining these values also provided evidence that the board’s
original opinion that imputing more values would be too time-consuming was justified. Furthermore, the
benefits of FCS compared to joint modeling were unfortunately difficult to ascertain given the volume of the
data.

Nevertheless, using longitudinal data was proven to be useful and easy to implement, allowing for a more
flexible approach to imputation dependent on how many missing values were present for each participant.
An extension of the stepwise approach presented here would be to separate the cases further depending on
missing patterns, such as perhaps only using longitudinal data in cases where at least two years of data were
available. Given the sheer amount of data, this approach was not feasible here in order to adhere to deadlines.
The lack of information concerning the reasons behind the data being missing also made this problem harder
and underlines the importance of providing the missing data mechanism in a survey’s documentation to
facilitate imputation.
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