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1 Introduction

The rising popularity of the network model of psychopathology, which captures the dynamic
interplay between symptoms over time, has led to the widespread use of vector autoregressive
(VAR) models. VAR models are popular due to their flexibility in choosing the number of lags
and their relative simplicity. However, the rich parameterization of VAR models introduces
risks such as overfitting, imprecise inference, and significant uncertainty in future projections
(Karlsson, 2012). Overfitting occurs when the model mistakes sample-specific noise for the true
underlying signals or patterns in the population (Yarkoni & Westfall, 2017).

In line with extensive coverage in econometrics over the past few decades, the field of
psychopathology has recently reemphasized the risk of overfitting in VAR models (Bulteel,
Tuerlinckx, et al., 2018; Bulteel, Mestdagh, et al., 2018; Lafit et al., 2022). Overfitting
in traditional regression models (e.g., ordinary least squares regression) often arises from
over-parameterization: having too many parameters relative to the sample size (Babyak, 2004).
More specifically, for each added lag, the number of regression coefficients increases by the
square of the number of endogenous variables!. This issue is particularly relevant for small
time series, which are common in applied psychopathology research due to considerations of
client burden, potential for attrition, and limited resources. Consequently, researchers often
opt for VAR models with a single lag, regardless of whether this makes sense substantively.
This practice is not without consequences: “While being powerful forecast devices that can fit
the data well, VAR-models may require relatively large lag lengths p in order to match the
time series properties of the data which, with the many parameters to estimate can cause poor
forecasting performance” (Karlsson, 2012).

The main Frequentist argument for utilizing the Bayesian approach to VAR models is that it
may mitigate the issue of overfitting and the ‘curse of dimensionality’ by imposing a structure
through informative data-centric prior beliefs, thus enabling the use of larger models (Banbura
et al., 2010). For instance, the Minnesota prior introduced by Litterman (1979) shrinks the
parameters towards a useful benchmark, promoting the use of higher lags, reducing parameter
uncertainty, and improving forecasting accuracy (Karlsson, 2012). From a Bayesian perspective,
it may also be said that this prior captures widely held beliefs about the long-run properties of
the data, which are not evident in the typically short samples used for estimation. Moreover,
Bayesian estimates are conditional on the data and prior beliefs, reflecting inherent uncertainty
in the posterior distribution. This differs from Frequentist estimates, which are point estimates
that do not capture this uncertainty.

2 The Bayesian Person-specific VAR (p) Model

2.1 Introduction and Notation

In the multivariate person-specific VAR(p) model, data from each individual are treated sep-
arately, with each variable regressed on all endogenous variables M (where m = 1,..., M),
including itself, for every lag up to p. The model is represented as:

P
y,=C+ Z Ay te€
i—1

!The number of estimated parameters in a VAR model (with intercept) is given by M + M2 x p, where M
represents the total number of endogenous variables and p the number of lags.
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Here, Cis an M x 1 vector of intercepts, A, are M x M coefficient matrices for lagged values, and
€, is an M x 1 vector of error terms at time ¢. The error terms are assumed to be independent
and identically distributed with a normal distribution, mean zero, and covariance matrix X,
allowing for contemporaneous correlations between error terms of different variables (o;; # 0 for
i # 3).

For simplicity, the VAR model can be expressed in matrix form using the matric-variate Normal
Distribution. Define Y as a T' x M matrix of observations, and x, = (1,y; 4,...,y;_,) as the
regressor vector for each time period t. The regressor matrix X collects these vectors for all
time periods, and with K = 1+ M x p, X is a T' x K matrix. Stack all coefficient matrices
into A = (C,A4,...,A,). In vectorized form, this becomes @ = vec(A), a KM x 1 vector of
coefficients. The VAR model can then be written compactly in two equivalent forms

Y=XA+E
y=Iy®X)a+e

where y and e are the vectorized forms of Y and E, I,, is the M x M identity matrix, and ®
denotes the Kronecker product. Given the assumptions about the error terms, the likelihood
function of the VAR model is expressed in terms of & and X. The posterior distribution of a given
Y. and the data is normally distributed, and the inverse of X follows a Wishart distribution:

|y~ N@&ET e (X'X))
Sy ~WES LT —K—M-1)

where a = vec(AA) with A = (X’X)"1X"Y is the ordinary least squares (OLS) estimate of A,
and S = (Y — XA)' (Y — XA) is the sum of squared errors (SSE).

2.2 Priors

In the context of Bayesian VAR models, various priors can be used to impose structure and
facilitate estimation. To maintain simplicity, we considered the natural conjugate prior and the
independent Normal-Wishart prior.

The Normal-Wishart prior is the natural conjugate prior for normal multivariate regressions.
Unlike the well-known Minnesota prior, the natural conjugate prior provides a complete Bayesian
treatment by considering ¥ as an unknown parameter. This prior is specified as: a | ¥ ~
N(@,2® V) and X1 ~ W(S™1 v), where a, V, S, and v are hyperparameters chosen by the
researcher. Under this prior, the posterior distributions are: a | X,y ~ N(a,X ® V) and
1 |y ~ W(S1,v), with updated parameters: V = [V7! + X'X]7! a = vec(A), S =
S+(Y—XA)(Y—XA) and v =T +v. This allows for direct analytical solutions for posterior
inferences and predictions. A special case of the conjugate prior is the non-informative prior,
which sets v = S = V7! = cI and ¢ — 0, yielding posterior results based on Frequentist OLS
quantities without coefficient shrinkage.

The independent Normal-Wishart prior combines the flexibility of the well-known Minnesota
prior with the Bayesian completeness of the natural conjugate prior. It assumes that the param-
eters & and ¥ are independently distributed as follows: a ~ N (B, V) and 1 ~ W(S™1,v).
This prior’s posterior distributions are then: a | ¥,y ~ N (e, ® V) and Ty ~W(ST ),
where 8,V 3, S, and v are prior hyperparameters. This approach is more flexible than the Normal-
Wishart prior, allowing incorporation of additional explanatory variables and more complex prior
covariance structures.
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3 Methods

3.1 Bayesian Estimation

Extensive testing with simulated multivariate time series data ensured accurate estimates and
achieved convergence, though not elaborated here for brevity. To illustrate the Bayesian VAR(1)
model, we examine the short-term relationship between mood satisfaction and restlessness using
100 timepoints in a single patient from the dataset of Kossakowski et al. (2017), where each
item was measured on a 5-point scale. Three prior specifications were considered for the BVAR
model:

e Model 1: The conjugate non-informative prior. No hyperparameters are specified.

e Model 2: The conjugate Normal-Wishart Prior. Combines a normal prior for
coefficients with an inverse-Wishart prior for the covariance matrix. Hyperparameters
chosen are @ = O pyy1, V=101, v =M + 1, and S™! =1,,.

e« Model 3: The Independent Normal-Wishart Prior. Assumes independence between
coefficients and covariance matrix. Hyperparameters chosen are 8 = Oy pry1, Vg = 1015y,
v=M+1,and S7! =1,,.

The estimation involved Monte Carlo integration for models 1 and 2, where the poste-
rior directly depends on OLS estimates, and Gibbs sampling for model 3. The function
Bayesian_Bivariate_VAR1 was developed to estimate these models, involving the following
steps:

1. Data Preparation: Endogenous variables were lagged to create matrices Y and X, with
an intercept added to X. The number of observations (1), endogenous variables (M),
and coefficients (K) are defined. The OLS estimators for the coefficients and the error
covariance matrix are specified as initial values (for models 1 and 2).

2. Prior Specification: Hyperparameters and prior distributions were specified based on
the selected prior.

3. Posterior Sampling: Posterior draws of coeflicients and covariance matrix were obtained
for each chain and iteration, excluding burn-in samples. All models were ran with 2
separate markov chains. For models 1 and 2, 10,000 iterations were used without burn-
in?, while model 3 employed 15,000 iterations with the first 5,000 as burn-in. Sampling
methods varied by prior:

e Model 1: The posterior of A is sampled from a multivariate normal distribution
given X, the data (incl. OLS coefficients). The posterior of ¥ is sampled from an
inverse Wishart distribution given the data (incl. SSE).

e« Model 2: The posterior of A is sampled from a multivariate normal distribution
given ¥, the data (incl. OLS coefficients) and prior information. The posterior of ¥
is sampled from an inverse Wishart distribution given A, the data (incl. SSE) and
prior information.

e Model 3: The posterior of A is sampled from a multivariate normal distribution
given X, the data and prior information. The posterior of ¥ is sampled from an
inverse Wishart distribution given A, the data (incl. SSE) and prior information.

2A burn-in period is not strictly necessary for the models two with the conjugate priors, as they are depend
directly on and are initialized with OLS quantities.
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4. Posterior Analysis: Summary statistics computed from posterior densities, including
mean, standard deviation, and credible intervals, provided insights into parameter esti-
mates.

5. Convergence Diagnostics: Trace plots, density plots, autocorrelation functions,
Gelman-Rubin statistic, and Monte Carlo error were employed to assess convergence

3.2 Bayesian Model Selection

To compare the performance of the three different models, we used the Bayes Factor as a model
selection criterion. The Bayes Factor quantifies the relative evidence for one model over another
by taking the ratio of their marginal likelihoods, which represent the integral of the likelihood
function over the parameter space.

There are various methods to estimate the marginal likelihood of a gibbs-sampler, including
the Harmonic Mean Estimator (Newton & Raftery, 1994), Chib’s method (Chib, 1995), and
the closed-form solution of the marginal likelihood is available for the two conjugate priors, as
a multivariate/matricvariate t-distribution (Karlsson, 2012; Koop & Korobilis, 2010; Murphy,
2007). Due to its simplicity, we opted for approximating the marginal likelihood using the
Harmonic Mean Estimator, which is calculated for each chain?:

1 N
ply [a,5) = &> “ply | o, 50)
n=1

where p(y | o™ %)) denotes the likelihood of the data given the parameters at iteration n
and N is the total number of iterations. After doing this for all three models, we computed the
Bayes factor (Kass & Raftery, 1995) for each chain as the ratio of two marginal likelihoods:

BF, = ply [ M;) _ my

ply | M j) m;
where M; and M, are the two models being compared, and m, and m; are the marginal likeli-
hoods of the respective models. A Bayes Factor greater than 1 indicates that the data is more

likely under model ¢ than model j.

4 Results

4.1 Bayesian Estimation

To assess whether the sampled data of the three models converged to a stable constant distri-
bution, we employed (1) history/trace plots, (2) autocorrelation plots, (3) the Gelman-Rubin
statistic and (4) Monte Carlo error. For both the initial assessment with simulated data and the
empirical data, the traceplots, which show the evolution of the sampled values over the iterations,
displayed stable intermingling of the chains, representing a ‘fat hairy catterpillar’ (see Appendix
A; Figure 1, 4, 7). Autocorrelation plots demonstrated rapid decay to low values: models 1 and
2 exhibited correlations near 0 at from lag 1 onwards, while model 3 showed autocorrelations
below 0.15 at lag 1 and to 0 at lag 2 (see Appendix A; Figure 3, 6, 9), indicating efficient mixing

3Computing the Marginal likelihoods and Bayes Factors separately for each chain allows us to detect potential
instability of the Harmonic Mean Estimator.
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of chains. The Gelman-Rubin statistic for all parameters in all models was exactly 1.000 (see
Table 2, 3, and 4), indicating minimal variance between chains and suggesting good convergence.
The Monte Carlo error, quantifying uncertainty in posterior estimates, was less than 5% of the
sample standard deviation for each parameter in all models (see Table 2, 3, and 4), further
supporting robust convergence.

Note that although we have not found any evidence that the markov chains failed to convergence,
we have not and cannot prove that convergence occurred using the discussed diagnostic checks.
Nevertheless, the strong convergence observed in models 1 and 2 aligns with expectations due
to their closed-form posterior solutions.

4.2 Posterior Analysis

The posterior means of the coefficients and covariance matrix ¥ for each model are summarized
in Appendix B (Tables 2, 3, and 4). Upon closer examination, models 1 and 2 exhibit similar
estimates for the coefficients in matrix A, while model 3 shows notably smaller estimates, par-
ticularly for the intercepts. The elements of the covariance matrix ¥ show minimal variation
across all models, albeit slightly differing in model 3. Posterior standard deviations of the coeffi-
cients and covariance matrix are comparable across models, except for the intercepts, which are
substantially smaller in model 3. The credible intervals also reflect these differences, aligning
with the smaller means and standard deviations observed in model 3.

Notably, the intercepts exhibit the highest uncertainty, evident from their larger standard devi-
ations and wider credible intervals. The minimal variation in estimates of ¥ across all models
suggest that the choice of prior has minimal impact on its estimation, indicating robustness to
prior specification. In contrast, the varying estimates of matrix A across models underscore the
significant influence of prior choice, particularly the prior independence present and the lack of
incorporation of the OLS coefficients in sampling procedure in model 3.

Given that the psychological measures were based on a 5-point Likert scale (ranging from 1
to 5), it is concerning that intercept values below 1 suggest an equilibrium level below the
lowest possible score when past influences are absent. Moreover, credible intervals indicating
95% confidence that intercepts fall between 0.25 and 1.5 raise questions about the suggested
confidence in and plausibility of these estimates. Models 1 and 2 provide more plausible intervals,
suggesting that we may be 95% confident that the baseline level of restlessness falls between 0.6
and 2.2, and that the baseline level of mood satisfaction falls between 1.8 and 4.1.

4.3 Bayesian Model Selection

Table 1 presents the Bayes Factors computed for each model comparison. The Bayes Factor
comparing model 1 to model 2 indicates that after observing the data, model 1 is approximately
0.9 times more likely than model 2, suggesting a very slight preference for model 2, albeit not
strongly supported. In contrast, the Bayes Factors comparing model 1 to model 3 indicates
that after observing the data, model 1 is approximately 18,000 to 20,000 times more likely than
model 3, suggesting an extreme preference for model 1 over model 3. Comparatively, the Bayes
Factors for model 2 versus model 3 indicate that model 2 is approximately 20,000 to 23,000 times
more likely than model 3, indicating an extreme preference for model 2 over model 3. These
results show that models with conjugate priors are strongly favored over the model with the
independent Normal-Wishart prior, with a preference for the Normal-Wishart prior model over
the non-informative prior model.
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Table 1: Bayes Factors for each chain

BF_ 12 BF_13 BF_23

chain 1 0.872 18104.98 20753.76
chain 2 0.876 19825.90 22630.30

5 Discussion

The current investigation highlighted that the absence of evidence for non-convergence does not
necessarily confirm that the Markov chains have indeed converged. Diagnostic checks such as
history /trace plots, autocorrelation plots, the Gelman-Rubin statistic, and Monte Carlo error
suggested that the Markov chains had reached a stable distribution. While this aligns with our
expectations pertaining the Monte-Carlo processes of models 1 and 2, the convergence results
may be misleading for model 3.

Posterior analysis revealed consistent estimates for the coefficients in matrix A across the first
two models. However, Model 3 produced substantially different and implausible values, suggest-
ing potential bias. This discrepancy may indicate a lack of convergence, potentially caused by
poor initialization, leading the markov chain to a local rather than a global mode. Although
Models 2 and 3 used identical hyperparameters and relied on the sum of squared errors (SSE)
estimates, the sampling procedure in Model 3 did not depend on the OLS coefficients. This
might explain why the ¥ estimates were similar across all models, but the A estimates were
not.

Bayes Factors indicated an extreme preference for models with conjugate priors over the model
with the independent Normal-Wishart prior. There was a slight preference for the model with the
Normal-Wishart prior over the non-informative prior. The significant support for the conjugate
models further implies potential issues with the posterior estimates of Model 3. Additionally,
the lack of fine-tuning of hyperparameters in Model 3 may have exacerbated this issue, while
Model 2, relying on OLS coefficients, appeared more robust. However, due to time constraints,
hyperparameters for Models 2 and 3 were not optimized to achieve intended shrinkage effects,
evident in relatively weak model support and similar uncertainties (e.g., credible intervals).

Due to time constraints, we used the Harmonic Mean Estimator to compute marginal likelihoods.
Ideally, for models 1 and 2 with conjugate priors, direct computation using the multivariate ¢-
distribution would have provided closed-form solutions. Model 3 would have benefited from the
method proposed by Chib (1995), known for producing more stable estimates. These choices
could have influenced the Bayes Factors and overall result validity, potentially contributing
to the extreme values observed. However, despite these methodological differences, consistent
conclusions were drawn across different chains, suggesting reliable results from our chosen ap-
proach.

Similarly, due to time constraints, multiple lags were not implemented despite their potential
benefits mentioned in the introduction, which could enhance Bayesian VAR model shrinkage.
According to (Karlsson, 2012), multiple lags are crucial for capturing data’s time series properties
accurately. Consequently, the simplicity of models used in this empirical example might have
resulted in limited validity and robustness.
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7 Appendix A

7.1 Model 1: Uninformative Conjugate Prior
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Figure 1: Trace plots of the coefficients and covariance matrix for the VAR(1) model with the

uninformative conjugate prior
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7.2 Model 2: Normal-Wishart Prior
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Figure 4: Trace plots of the coefficients and covariance matrix for the VAR(1) model with the
Normal-Wishart prior
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Figure 5: Density plots of the coefficients and covariance matrix for the VAR(1) model with the
Normal-Wishart prior
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Figure 6: Auto-correlation plots of the coefficients

with the Normal-Wishart prior
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7.3 Model 3: Independent Normal-Wishart Prior
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Figure 7: Trace plots of the coefficients and covariance matrix for the VAR(1) model with the
Independent Normal-Wishart prior
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Figure 8: Density plots of the coefficients and covariance matrix for the VAR(1) model with the
Independent Normal-Wishart prior
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Figure 9: Auto-correlation plots of the coefficients and covariance matrix for the VAR(1) model
with the Independent Normal-Wishart prior
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8 Appendix B

Table 2: Posterior draws of the coefficients for model 1

Mean SD 2.5% 50% 97.5% Monte Carlo error R hat
all 0.204 0.108 -0.012 0.205 0.415 le-05 1
al2 0.100 0.171 -0.235 0.100 0.438 1le-05 1
a2l 0.008 0.072 -0.133 0.008 0.151 0e—+00 1
a22 0.052 0.114 -0.169 0.051 0.281 1le-05 1
cl 2.956 0.575 1.827 2.954 4.098 3e-05 1
c2 1.416 0.387 0.650 1.419 2.167 2e-05 1
sigmall 0.933 0.139 0.698 0.920 1.240 1le-05 1
sigmal?2 -0.231 0.068 -0.377 -0.227 -0.109 0e+00 1
sigma?2l -0.231 0.068 -0.377 -0.227 -0.109 0e-+00 1
sigma?22 0.416 0.062 0.312 0.410 0.553 0e+00 1

Table 3: Posterior draws of the coefficients for model 2

Mean SD 2.5% 50% 97.5% Monte Carlo error R_ hat
all 0.221 0.104 0.012 0.221 0.424 1le-05 1
al2 0.121 0.166 -0.202 0.120 0.448 le-05 1
a2l 0.016 0.070 -0.121 0.016 0.155 0e+00 1
a22 0.062 0.111 -0.153 0.062 0.282 1le-05 1
cl 2.856 0.552 1.766 2.855 3.952 3e-05 1
c2 1.367 0.373 0.629 1.369 2.093 2e-05 1
sigmall 0.895 0.129 0.675 0.883 1.180 1le-05 1
sigmal?2 -0.213 0.063 -0.348 -0.209 -0.098 0e+00 1
sigma21 -0.213 0.063 -0.348 -0.209 -0.098 0e—+00 1
sigma?22 0.403 0.058 0.305 0.397 0.531 0e+00 1

Table 4: Posterior draws of the coefficients for model 3

Mean SD 2.5% 50% 97.5% Monte Carlo error R_ hat
all 0.561 0.069 0.426 0.560 0.697 0e+00 1
al2 0.487 0.128 0.236 0.486 0.741 1le-05 1
a2l 0.115 0.053 0.012 0.114 0.219 0e+00 1
a22 0.181 0.092 0.001 0.180 0.363 0e+00 1
cl 0.893 0.283 0.340 0.891 1.449 1le-05 1
c2 0.786 0.249 0.295 0.786 1.269 1le-05 1
sigmall 1.029 0.152 0.772 1.016 1.364 1e-05 1
sigmal?2 -0.183 0.071 -0.331 -0.179 -0.052 0e-+00 1
sigma2l -0.183 0.071 -0.331 -0.179 -0.052 0e+00 1
sigma?22 0.421 0.062 0.317 0.415 0.560 0e—+00 1
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