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The rising popularity of the network model of psychopathology, which captures the dynamic
interplay between symptoms over time, has led to the widespread use of the lag-1 vector au-
toregressive (VAR(1)) model. Networks based on the VAR(1) model have the potential to
provide valuable insights for clinicians in understanding and treating mental disorders. How-
ever, to establish whether meaningful inferences can be drawn from these networks, the qual-
ity of the model must be ensured. To this end, predictive accuracy analysis (PAA) may be
used to evaluate a model’s effectiveness to capture dynamics and generalize to unseen data.
While simulation-based PAA may identify overfitting, it may overlook violations of model
assumptions. This study investigates this limitation by conducting empirical and simulation-
based analyses to shed light on the potential consequences of employing large datasets in a
psychopathological context. Specifically, it suggests that such datasets may be prone to violate
the stationarity assumption, resulting in model misspecification. Therefore, when utilizing the
VAR(1) model, researchers are advised to carefully balance sample size, ensuring power and
preventing overfitting, while also avoiding model misspecification. In line with the hypothesis,
the simulation-based PAA yielded overoptimistic results and failed to identify violations of
the model’s assumptions. To avoid misinterpretation of inaccurate networks, the study rec-
ommends the use of empirical-based cross-validation procedures to evaluate generalizability
and predictive accuracy in real-world applications. Future research should address pressing
questions regarding predictive accuracy metrics and explore the relationship between VAR
assumption violations, model misspecification, and predictive accuracy outcomes.

Keywords: person-specific network, vector auto-regressive modeling, stationarity, model
misspecification, predictive accuracy analysis

1 Introduction

Despite persistent efforts spanning well over a century,
there has been limited progress in understanding the root
causes or specific etiology of mental disorders (Cacioppo &
Tassinary, 1990; Hayes et al., 1996; Kendler, 2016; Meehl,
1972; Schleim, 2022; Turkheimer, 1998). In response, trans-
diagnostic approaches have emerged, adopting a functional
classification approach that organizes behaviors based on the
underlying functional processes that produce and maintain
them (Hayes et al., 1996). The network approach to psy-
chopathology, in line with this perspective, proposes that
symptoms sustain and reinforce each other rather than being
mere effects of a shared external source (Borsboom, 2008,
2017; Bringmann et al., 2016; Cramer et al., 2010). For
example, in a patient with insomnia, the anticipation of a
poor night’s sleep can trigger worries about its consequences,
further reinforcing sleep difficulties. The interplay between
worry and tiredness may then impair emotional regulation,
exacerbating the tendency to experience situations that pro-
voke more worry (Wassing et al., 2019). Applying the net-
work approach to person-specific data provides clinicians

with insight into the temporal dynamics of a patient’s symp-
toms, enabling tailored interventions that target their specific
needs (Bringmann, 2021; von Klipstein et al., 2020).

To gather within-person longitudinal data, the experience
sampling methodology (ESM) is commonly employed. This
methodology involves collecting numerous in-the-moment
assessments from a single subject—through mobile devices
or electronic diaries—to record intraindividual variations in
psychological processes over time and circumstance (Lar-
son & Csikszentmihalyi, 2014). By obtaining data in the
naturalistic settings of individuals’ everyday lives, ESM of-
fers a more accurate reflection of daily experiences than
laboratory-based or retrospective self-reports. Within the
field of psychology, the lag-1 vector autoregressive model,
also known as the VAR(1) model, has emerged as the pre-
dominant choice for modeling the symptoms and momen-
tary states observed in within-person time-series data (Bring-
mann, 2021; Bulteel, Mestdagh, et al., 2018). In the multi-
variate VAR(1) model, each variable is a linear function of
all variables (including the variable itself) shifted back one
time point (Haslbeck et al., 2021; Lafit et al., 2022). Accord-
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ingly, the model enables the estimation of autoregressive ef-
fects, which refers to the relation between the current values
of a symptom and its past values, as well as cross-regressive
effects, which pertain to the association between the current
values of a symptom and the past values of another symptom.

Recently, more attention has been drawn to the risk of
highly parametrized models such as the VAR model to overfit
the data (e.g., Bulteel, Mestdagh, et al., 2018; Bulteel, Tuer-
linckx, et al., 2018; Lafit et al., 2022). That is, the model
mistakenly treats sample-specific noise for the true underly-
ing signals or patterns in the population (Yarkoni & Westfall,
2017). This results in inaccurate and random parameter esti-
mates that inadequately represent population characteristics,
making it difficult to draw meaningful conclusions about the
population (Bulteel, Mestdagh, et al., 2018). In regression
models, overfitting often arises when there are too many de-
grees of freedom relative to the sample size (Babyak, 2004).
This disparity leads to fluctuations in weights across sam-
ples, undermining the reliability of the model. For regression
models that employ within-person data, this implies that the
primary cause of overfitting is a shortage in the number of
time points (Bulteel, Mestdagh, et al., 2018). The extent to
which models overfit the data can be assessed by evaluating a
model’s capacity to predict new or unseen data from the same
population. When unseen data is not available for testing,
cross-validation (CV) is employed to estimate the predictive
accuracy of a model using a single sample. This technique
involves dividing the dataset into two parts: one is used to fit
the model, while the other contains the values that the model
aims to predict.

Aside from overfitting, VAR models face the challenge
of misspecification, leading to biased parameter estimates
and poor model fit (Cragg, 1968; Kaplan, 1988). Misspec-
ification occurs when the assumptions of a time-invariant
VAR model—such as stationarity—are violated (Liitkepohl,
2005). The stationarity assumption (Chatfield, 1980) im-
plies that the mean, variance, and autocovariance of the time-
series remain constant over time (Hamaker & Dolan, 2009).
However, time-series that involve psychopathological symp-
toms and a substantial number of timepoints are particu-
larly susceptible to violations of the stationarity assumption
(Bringmann et al., 2022). For instance, during the course of
therapy for a patient with insomnia, taking more measure-
ments for the symptom ’worry’ may enhance the likelihood
of observing fluctuations in the mean and variance over time.
As the patient improves their sleep hygiene and experiences
significant therapeutic benefits, there may be a noticeable
reduction in average symptom levels compared to the early
stages of therapy. To identify model misspecification arising
from the violation of VAR assumptions, the cross-validation
framework can be utilized.

Previous simulation studies conducted by Bulteel,
Mestdagh, et al. (2018) and Lafit et al. (2022)—that em-

ployed (vector) autoregressive models—have consistently
shown that larger time-series datasets yield higher predictive
accuracy. However, it is important to recognize the inher-
ent trade-off: while a larger number of time points reduces
the risk of overfitting, it simultaneously increases the likeli-
hood of violating model assumptions. Despite this trade-off,
current simulation-based predictive accuracy analysis (PAA)
methods ensure stationarity in extensive time-series (e.g.,
Bulteel, Mestdagh, et al., 2018; Lafit et al., 2022; Revol
et al.,, 2023). As a result, this simulation-based approach
may not accurately capture the issue of misspecification in
extensive psychopathological time-series data, leading to an
overly optimistic assessment of model performance that may
not generalize well to empirical data.

To address this gap in the literature, we will investigate
the impact of using empirical test data as opposed to sim-
ulated test data on predictive accuracy. This dissertation
aims to accomplish two objectives. First, it aims to illustrate
that VAR(1) models, estimated from a psychopathological
dataset with many timepoints, can be susceptible to model
misspecification. Second, it seeks to highlight that current
simulation-based predictive accuracy procedures, which as-
sume stationarity, may produce overly optimistic outcomes
that neglect concerns of model misspecification. Based on
these premises, it is hypothesized that a VAR(1) model es-
timated from a large time-series exhibits higher predictive
performance when tested with simulated data compared to
empirical data. The remainder of this paper proceeds as fol-
lows. First, we will shed light on the theoretical underpin-
nings and rationale behind the methods utilized. Next, we
discuss the procedures used to conduct the simulation and
empirical analyses. We then compare these findings and con-
clude with a summary discussion.

2 The Person-Specific VAR(1) Model

In the multivariate person-specific VAR(1) model, the data
of each individual are treated separately, with each variable
regressed on all variables p (p = 1,2,3,..., P), including
itself, at the previous measurement occasion. In the person-
specific VAR(1) model, the (P x 1) vector y,, representing the
variable scores at time ¢ ( = 1,2,3,...,T) is modeled using
the equation

Vi=0+®y, | +& (D

Here, y,_ is the person’s vector of variable scores at the
previous measurement occasion. The vector § is a (P X 1)
vector representing the intercepts. The matrix ® is a (P X P)
matrix, which contains the regression coefficients that quan-
tify the autoregressive effects (i.e., the diagonal elements)
and cross-regressive effects (i.e., the off-diagonal elements)
of the previous states on the current states. The vector g, is a
(P x 1) vector of residuals at time ¢ that captures the part of
the variables’ values that cannot be predicted based on their
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values at the previous time point. The vector of residuals &,
is commonly referred to as the “innovations” to emphasize
their nature as new or unexpected information that cannot be
attributed to past values.

For instance, suppose we are investigating the temporal
relationships between worry and sleep problems in a sin-
gle patient. Let us denote their values at timepoint ¢ as W,
and S, respectively. Estimating the person-specific bivariate
VAR(1) model from these symptoms would yield:

Wt = 6w + ®WWWI—1 + (I)wsSt—l + Ewy (2)
St = 5‘v + (D‘vwwt—l + (Ds.vst—l + Est (3)

Note that in the case of two variables, the VAR(1) model
comprises 9 model parameters. Let us now assume that we
fitted a bivariate VAR(1) to these symptoms and obtained the
following parameter estimates:

o=[2]-]19) @
o-lor oS b o
o)
o e g

In this VAR(1) model, 6 is a the (2 X 1) vector that rep-
resents the intercepts, containing ¢,, and §;. The matrix ®
is a (2 X 2) matrix containing the autoregressive and cross-
regressive coefficients, where the diagonal elements ®,,,, and
@, represent the autoregressive effects and the off-diagonal
elements ®,,; and @;, resemble the cross-regressive effects.
These parameter estimates indicate that the patient’s worry
and sleep problems at a previous timepoint (¢ — 1) are posi-
tively associated with their worry and sleep problems at the
current timepoint (7). The innovation vector g; includes the
(2 x 2) variance-covariance matrix X. The diagonal elements
of X represent the variances of the individual error terms (g, ,
and &;,), while the off-diagonal elements represent their co-
variance.

By utilizing the parameter estimates derived from Equa-
tion 4 and 5, along with the lagged data points W,_; and S,_1,
it is possible to make predictions on the present observation
W;. Let us assume that the reported values of W,_; and S,_;
are 3 and 5 respectively where ¢ is 8. Inserting these values
in Equation 2 yields the prediction:

Wis=10+06x3+04%x5=48 (8)

The VAR(1) model has several assumptions. First, it is
assumed that the innovations follow a multivariate normal

distribution with mean zero and variance-covariance matrix
X. Second, the assumption of global stationarity is imposed,
indicating that the process y is time-invariant with respect to
its mean, variance, and autocorrelation structure. The global
stationarity assumption holds when the modulus of the eigen-
values of the matrix ® is less than one (Liitkepohl, 2005).
In the event that this condition is not satisfied, the process
outlined by the system of Equation 1 remains coherent; how-
ever, the state vector y, will progressively diverge towards in-
finity (Loossens et al., 2021). This signifies system instabil-
ity, rendering the model less reliable for accurate predictions.
Third, the local stationarity assumption holds that the statis-
tical properties of the time-series remain relatively constant
within sub-samples of the data. It is important to note that
this assumption can be violated even if the global stationar-
ity assumption is fulfilled, as there may exist time-varying
dynamics or structural breaks within certain sub-samples.

Estimation of the person-specific VAR(1) model is com-
monly performed using separate ordinary least squares
(OLS) regressions for each variable or maximum likelihood
estimation (MLE; Hamilton, 1994; Liitkepohl, 2005). Al-
though MLE is more computationally intensive and com-
plex than OLS, the asymptotic properties of the two ap-
proaches are identical (Liitkepohl, 2005). Another popular
estimation method is provided by the Mplus software, which
employs the dynamic structural equation modeling (DSEM)
approach to directly estimate the full VAR(1) model with
Bayesian methods (Asparouhov et al., 2018; Hamaker et al.,
2018). While the implementation carries potential benefits,
the closed-source license reduces the accessibility of the soft-
ware, impeding the reproducibility of analyses. In contrast,
the open-source software R (R Core Team, 2022) enables
straightforward documentation of code in the implementa-
tion of OLS. Accordingly, in line with other simulation-
based predictive accuracy studies by Lafit et al. (2022) and
Revol et al. (2023), we adopt OLS for estimating a person-
specific VAR(1) model. This approach involves performing a
multiple linear regression analysis for each variable individ-
ually, where each variable serves as the dependent variable
and the lagged values of all variables (including itself) act as
independent variables.

3 Cross-Validation

To assess the predictive performance of a model, the
cross-validation framework is commonly employed. This
framework can evaluate how well a model can generalize to
unseen data, detect overfitting, indicate model misspecifica-
tion, select the best model among alternatives, assess model
robustness, and optimize resource efficiency. In a cross-
validation framework, the available data is partitioned into
a training set and a test set. The models under investigation
are fitted to the training set and the estimated parameters are
used to predict observation(s) in the test set.
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In a simulation study involving datasets with varying
numbers of observations, Bulteel, Mestdagh, et al. (2018)
compared different cross-validation procedures, including
leave-one-out CV (LOOCYV) and blocked CV, to evaluate
the predictive accuracy of lag-1 (vector) autoregressive mod-
els. These procedures differ in their approaches to construct-
ing the training and test sets. Namely, unlike blocked CV,
LOOCYV does not consider the serial dependency of a time-
series. This discrepancy explains why LOOCYV outperforms
blocked CV when the simulated data lack time dependence
but performs worse when time dependence is present.

In the condition with the most time points (7' = 500), Bul-
teel, Mestdagh, et al. (2018) found that leave-one-out CV
yielded the highest percentage of data sets for which the best
predictive model was selected. Given the abundance of time
points in the dataset used for this study, we anticipate that
this procedure will yield sufficiently accurate results. An ad-
ditional advantage of LOOCV over other CV methods is its
ability to maximize the utilization of the available data. Ac-
cordingly, using the technique of LOOCYV, we will "set aside
one individual case, optimize for what is left, then test on the
set-aside case" (Mosteller & Tukey, 1968, as cited in Stone,
1974).

Figure 1 illustrates how in each iteration of the LOOCV
procedure, a distinct observation is systematically excluded
from the dataset to form the test set (Hastie et al., 2009).
The remaining data, known as the training set, is fitted to the
model. Subsequently, the model parameters are employed to
predict the value of the excluded observation (e.g., Equation
8). This iterative process is carried out for every timepoint
t(t = 1,2,3,...,T) in the dataset, ultimately generating a
comprehensive collection of predictive values.

4 Predictive Accuracy Metrics

After the predicted values are computed for the test set,
different predictive accuracy metrics may be employed in
PAA. Previous studies examining the predictive accuracy of
VAR(1) models have commonly utilized the Mean Squared
Prediction Error (MSPE) as a performance metric (Bulteel,
Mestdagh, et al., 2018; Bulteel, Tuerlinckx, et al., 2018; Lafit
et al., 2022). These studies computed the MSPE for each
variable p (p = 1,..., P) by squaring and averaging the dif-
ferences between the observed and predicted values in the
test set (t = 1,...,T1est). In @ LOOCYV, the mean squared
prediction error for variable p, MSPE,, may be computed as
follows:

Trest

Z(yTest,p - 9Test,p)2 ©))

Test =1

MSPE, =

In this equation, yr,,, , denotes the observed value of vari-
able p at timepoint 7, and §r,,, , represents the predicted
value of variable p at timepoint ¢ based on the training data

excluding that particular timepoint. The squared prediction
error (Yr,s,p = I7est, [,)2 may be obtained by squaring the dif-
ference between the observed and predicted value. By sum-
ming the squared prediction errors across all T timepoints
and dividing by the total number of timepoints Tes, We ob-
tain the MSPE estimate for variable p.

An overall MSPE across all variables may then be com-
puted by averaging the MSPE, over the variables p (p =
L,...,P)":

1

P
MSPE = Z MSPE, (10)
p=1

~l

MSPE is a reliable metric for univariate models like the
lag-1 autoregressive (AR(1)) model, which focuses on a sin-
gle variable. However, its suitability decreases when applied
to multivariate models such as the VAR(1) model, which in-
volves multiple variables. This is because MSPE assumes
a constant innovation variance across variables, which does
not hold in multivariate models, where each variable can
have a unique pattern of innovation variance. Despite this,
when calculating the overall MSPE for multivariate mod-
els, the prediction errors of each variable are averaged and
squared without accounting for potential variations in inno-
vation variances or the impact of covariance between pre-
diction errors of different variables (Revol et al., 2023). In
essence, MSPE treats all variables equally in terms of error,
which can lead to misleading evaluations that disregard the
intricate complexities and interdependencies inherent in mul-
tivariate models. Hence, recent studies (Lafit et al., 2022;
Revol et al., 2023) have highlighted the need for caution
when interpreting MSPE in VAR(1) models.

To address these issues, Revol et al. (2023) proposed the
use of Mahalanobis distance—a statistic that takes into ac-
count the innovation covariances—which is squared for ev-
ery timepoint to represent a standardized multivariate predic-
tion error:

D2 = (yTest - 9Test)T):‘71 (YTest - 9Test) (1 1)

Here, yr. 1s a (P X 1) vector that represents the observed
values of the test sample and §. is a (P X 1) vector that rep-
resents the estimated or predicted values of the test sample.
The matrix £~! is the inverse of the covariance matrix of the
training sample. By employing X!, the resulting distance
measure D? can account for the underlying multivariate dis-
tribution of the innovation terms.

If the true model parameters are used to predict the test
set, the squared Mahalanobis distances D?> conform to a uni-
variate y? distribution with degrees of freedom equal to the
number of variables (P). This implies that if a training set

'Note that averaging the MSPEp across variables does not make
it a multivariate statistic.



MODEL MISSPECIFICATION IN VAR(1) MODELS 5

Figure 1

Leave-One-Out Cross-Validation Procedure
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Note. For a dataset of T = 40 observations, the figure represents the elements of the test set as dark-colored squares and the elements of the

training set as blank squares. The number of timepoints in each iteration, as well as the total number of iterations, is equal to T'.

is sufficiently large, the distribution of D? should approxi-
mate the y? distribution. Conversely, if the training set is
too small, larger D? will be observed, leading to a distribu-
tion with a heavier right tail. This behavior was employed
to quantify the predictive accuracy of the VAR(1) model es-
timates. Specifically, Revol et al. (2023) computed the pro-
portion of D> among the associated prediction errors that fall
below the 95th percentile of the y*(P) distribution for a given
training set n (n = 1,..., Ntraining). This proportion was de-
noted as pmar,9s. To assess the predictive accuracy, Revol et
al. (2023) proposed a threshold of .94, whereby pwa 05 val-
ues surpassing this threshold indicate satisfactory predictive
performance for a specific training set. To provide an overall
assessment of how pual, 05 performed across all training sets,
the predictive accuracy probability (PAP) may be computed.
The PAP represents the proportion of generated training sets
in which ppa 05 exceeded the predefined threshold of .94.
Subsequently, Revol et al. (2023) established a criterion for
the sufficient PAP of 0.8, serving as a benchmark to deter-
mine the minimum sample size required for obtaining gener-
alizable results.

5 Methods

This study carried out two main analyses to explore the
potential overoptimistic predictive performance of the simu-
lated test data: 1) a leave-one-out cross-validation (LOOCYV)
using the empirical test set and 2) a predictive accuracy anal-
ysis for the stimulated test set. Given the extensive number
of timepoints (r = 1,...,966) involved in both analyses, a
high predictive accuracy should be expected with minimal
overfitting. However, on the one hand, it is anticipated that
the empirical-based analysis will detect misspecification, re-
sulting in a lower predictive accuracy. On the other hand, the
simulation-based analysis is expected to overlook the mis-
specification and maintain a high predictive accuracy. To
check for the robustness of the results, two different predic-
tive accuracy metrics, namely MSPE and Mahalanobis dis-
tance, were compared. All analyses were performed in R

version 4.2.0 (R Core Team, 2022). The scripts used to con-
duct the analyses described in this paper will be accessible
on the project’s OSF page (https://osf.io/7pm89/) two years
after the project’s completion. The following section pro-
vides an overview of the data and outlines the procedures
employed to evaluate stationarity and predictive accuracy.

5.1 Data Description

To illustrate the detection of model-misspecification
through empirical- and simulation-based PAA, we utilized
the Peter Groot (2010) dataset, which was previously exam-
ined by Wichers and Groot (2016), Cabrieto et al. (2018),
and Albers and Bringmann (2020). These studies specifi-
cally identified departures from stationarity in the dataset,
manifested as changes in the autocorrelation of momentary
symptoms over time. This phenomenon, commonly referred
to as ’critical slowing down,” suggests that when the underly-
ing dynamics of symptoms deviate from stationarity, it may
indicate a ’critical state’ where treatment interventions are
most effective (van de Leemput et al., 2014).

The dataset was collected through ESM and consisted of
2390 prospective momentary observations of daily life expe-
riences from a mental health care user (Kossakowski et al.,
2017; Wichers & Groot, 2016). The individual in question
has a medical history characterized by recurring episodes of
Major Depression (MD) and has been prescribed antidepres-
sant medication for the past 8.5 years?. Wichers and Groot
(2016) examined the data according to the complex dynam-
ical system theory and estimated a VAR(1) model from five
symptoms. Among these symptoms, the item ’worry’ was
used as a measure of cognition, and the item ’suspicious’
was used to assess psychotic experiences. The remaining
three symptoms, namely negative affect, positive affect, and
mental unrest, were derived from principal components anal-
ysis conducted on several affect items. For the purposes of
maintaining consistency with the original study Wichers and

2For more information on the items used and the publicly acces-
sible OSF page, please refer to Kossakowski et al. (2017).
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Groot (2016)—while avoiding the complexity of retrieving
the principal components>—the current study replaced the
three components with single items. Specifically, ’satisfied’
replaced the component ’positive affect’, ’"down’ replaced
"negative affect’, and ’restless’ replaced *mental unrest’.

5.2 Preliminary Analysis

Prior to conducting the main predictive accuracy analy-
ses, the data underwent pre-processing, and a VAR(1) model
was fitted. For simplicity, listwise deletion was employed to
handle the missing data, selecting cases that have no missing
values across all variables and discarding cases with miss-
ing values (Schafer & Graham, 2002). This procedure as-
sumes that missing data are missing completely at random
(MCAR)*. Once the missing observations of these symptoms
were handled through listwise deletion, 966 observations re-
mained, and 1424 were discarded. Although the reduction
in power resulting from discarding this many cases may be
deemed tolerable, it raises doubts about the assumption that
the missing data are MCAR. Subsequently, the VAR(1) was
fitted on the remaining observations, and the parameter esti-
mates were extracted. This resulted in the (5% 1) vector &, the
(5 X 5) matrix @, and the (5 X 5) variance-covariance matrix

X
Opa 3.24
Omu 1.24
=10.62 (12)
1.09

0.77

027 -0.07 -0.18 0.01 -0.02

-0.03 040 0.06 0.00 0.06
®=(-0.16 -0.03 0.17 0.19 -0.00 (13)

-0.08 0.00 006 041 0.03

-0.01 0.04 005 0.07 025

079 =034 -030 -0.25 -0.15

-034 069 0.12 009 0.12
X=|-030 0.12 041 030 0.14 14)

-025 009 030 051 0.19

-0.15 0.12 0.14 0.19 024

Note. The parameter estimates in each column and row con-
sistently align with the associated variables in the following order:
positive affect, mental unrest, negative affect, worry, and suspicious.

All eigenvalues of the matrix ® had a modulus of less than
one, indicating that the global stationarity assumption of the
VAR(1) model was not violated.

5.3 Network

To provide intuitive insight into the VAR(1) model, a net-
work visualization was created (see Figure 2). The network
depicted variables as nodes and represented edges based on
the VAR(1) coefficients. Positive affect was represented by
the node ‘PA’, mental unrest by ‘MU’, negative affect by
‘NA’, worry by ‘WO’, and suspicious by ‘SU’. The net-
work diagram displayed the significant edges of the matrix
® (Equation 13) with autoregressive effects as self-loops and
cross-regressive effects as directed arrows connecting dis-
tinct nodes. To generate the network diagram, we utilized
the qgraph package (Epskamp et al., 2012). Positive VAR(1)
weights were depicted as blue solid arrows, while negative
weights were represented as red dashed arrows. The thick-
ness of the edges was relative to the magnitude of the cor-
responding VAR(1) coefficient, with thicker edges indicating
larger coeflicients for lagged effects.

Figure 2

Network Depicting the VAR(1) Coefficients

Note. Only edges that are significantly different from 0 (p < .05)
are visualized in the network, where each edge represents the point
estimate of a lagged effect.

5.4 Stationarity Assessment

Given that the studies by Wichers and Groot (2016),
Cabrieto et al. (2018), and Albers and Bringmann (2020)
utilized different variables, we performed additional assess-
ments of stationarity for each variable (see Appendix A).

3Wichers and Groot (2016) provides no documentation on the
methods used to retrieve the principal components.

“Note that listwise deletion may bias parameter estimates if
missing data are not MCAR and can still be inefficient in multi-
variate analyses if MCAR holds Schafer and Graham (2002).
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Specifically, we conducted univariate time-series analyses
at lag 1 using the Augmented Dickey-Fuller (ADF) test
to detect unit roots (Dickey & Fuller, 1979), and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to assess
trend stationarity (Kwiatkowski et al., 1992). For the ADF
test, the null hypothesis was rejected for all variables, indi-
cating stationary behavior without a unit root (see Table Al).
However, the KPSS test for trend stationarity yielded mixed
results (see Table A2): the null hypothesis was rejected for
four of the five variables, suggesting the presence of a trend
around a constant mean. The contrasting results from these
tests imply ambiguity in the stationarity characteristics of the
time-series.

The local stationarity of the variables was evaluated by
employing the ADF and KPSS test statistics as rolling statis-
tics over time with a window size of 50 timepoints. First,
the ADF test statistic was consistently less negative than the
critical value for four of the five time-series, indicating that
there may be structural breaks within the time-series (see
Figure Al). Second, the KPSS test statistic exceeded the
critical value at several points in all five variables, illustrat-
ing temporary departures from stationarity in the time-series
(see Figure A2). Taken together, the results imply that the
data exhibit non-stationary behavior in sub-samples of the
data.

5.5 Empirical-Based Cross-Validation Analysis

To evaluate the predictive performance of the VAR(1)
model estimated from empirical data, we utilized the
LOOCYV technique (as shown in Figure 1). This technique al-
lowed us to calculate both the MSPE and the squared Maha-
lanobis distance. Since the analyses share many similarities,
the latter will focus solely on highlighting the differences.

5.5.1 MSPE Evaluation Using LOOCV

In this subsection, we utilized the LOOCV technique dis-
cussed in Section 3 to calculate the MSPE,, for each of the
five variables, as well as the average MSPE across all vari-
ables. For each iteration, we followed these steps:

Step 1: Create a Training and Test Set. The training
set (Trraining = T — 1 = 965) was constructed by excluding
a single unique observation from the dataset. The excluded
observation formed the test set (Trese = 1).

Step 2: Fit the Model. A person-specific VAR(1) model
was fitted on the training set as discussed in Section 2.

Step 3: Make Predictions. Based on model parameters
of the fitted VAR(1) model, predictions were made for the
test set as described in Section 2 (e.g., Equation 4).

Step 4: Compute Prediction Errors. The prediction er-
rors were computed by subtracting the predicted values .
from the current observations yr. (see Equation 9).

This iterative process was carried out for every timepoint
t(t=1,...,966) in the dataset, generating a comprehensive

collection of predictive errors. To quantify the prediction ac-
curacy, the MSPE,, was calculated for each criterion variable
(as discussed in Section 4; see Equation 9). Next, the MSPE,
scores were averaged over all variables, yielding an average
MSPE (see Equation 10; see R code heading "Mean Squared
Prediction Error").

5.5.2 Mahalanobis Distance Evaluation Using LOOCV

In this subsection, we employed the LOOCYV technique to
compute the squared Mahalanobis distance and the estimated
predictive accuracy (%). Again, Steps 1 through 4 (outlined
in Section 5.5.1) were followed to obtain a collection of pre-
diction errors. Subsequently, the squared Mahalanobis dis-
tances were computed (as explained in Section 4; see Equa-
tion 11). To assess the estimated predictive accuracy of the
model, the proportion of squared Mahalanobis distances that
were lower than the 95th percentile of the y?(df = 5) dis-
tribution (see R code heading "Estimated Predictive Accu-
racy").

5.6 Simulation-Based Predictive Accuracy Analysis

Besides the cross-validation analysis with empirical test
data, we undertook a simulation study to create a bench-
mark scenario that upholds VAR assumptions and avoids any
model misspecification. Adding onto the empirical-based
analysis, the simulation-based analysis performed another
round of computations for the MSPE and the squared Ma-
halanobis distance. As there were similarities between the
analyses, this section specifically aims to emphasize the dif-
ferences.

5.6.1 MSPE Evaluation in the Simulation Study

This subsection will provide an overview of the steps
taken to perform a simulation-based PAA to compute the
MSPE,, for each variable, as well as the average MSPE.

Step 1: Select Parameters. Prior to simulating the data,
we need to obtain the parameters from the VAR(1) model es-
timated using the empirical dataset. These model parameters
were obtained in Section 5.2 (see Equation 12, 13 and 14).

Step 2: Generate Training Data. To simulate the train-
ing data, several steps were undertaken. First, the specifica-
tions were defined, including the number of simulated time
points (Training = 966) and the number of sets to simulate
(NTraining = 1000). In addition, a seed was set to ensure re-
producibility’ and the number of burning observations were
established (T'Byming = 1000). By eventually discarding the
burning observations, bias can be reduced® and models can

3Setting a seed ensures that the same sequence of random num-
bers will be generated each time the code is run.

®Discarding the burning observations can reduce bias introduced
during the initial phase of the simulation, as the initial observations
may not accurately represent the true system behavior.
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reach a steady-state behavior. Next, the innovations were
simulated according to a multivariate normal distribution.
The starting value of each time-series is then set by com-
bining the expected value and the innovation at the first time-
point. For each training set n (n = 1,...,1000), the entire
time-series was then simulated using the VAR model param-
eters, incorporating the intercepts 6, the matrix ®, and the
simulated innovations &. Finally, the burning observations
were excluded from the data and lagged variables were cre-
ated.

Step 3: Fit the Model. To obtain the model param-
eters, a VAR(1) model was fitted on each training set n
(n = 1,...,1000). For each variable, the intercept ¢, the
autoregressive coefficient, and the four cross-regressive co-
efficients were collected and organized for further analysis.

Step 4: Generate Test data. To evaluate whether the
VAR(1) model of a given training set could make accurate
predictions, a test set was generated. This test set serves
as a representation of unseen values, allowing for a direct
comparison with the predicted values. The complete time-
series for the test set was simulated using the same procedure
outlined in Step 2. However, in this case, the simulation of
test data encompassed a much larger number of timepoints
(Trest = 100, 000). This ensured that predictive accuracy was
not affected by sampling variability resulting from a small
testing set.

Step 5a: Compute MSPE. The final step involved the
computation of the MSPE,, for each variable estimated from
each training set n (n = 1,...,1000), as well as the average
MSPE. The computation followed the same procedure out-
lined in Section 5.5.1, with the only difference being that the
test and training sets used in this analysis were larger in size
than in the empirical analysis (see R code headings "Step 5a:
Compute MSPE").

5.6.2 Mahalanobis Distance Evaluation in the Simulation
Study

In this subsection, we describe the steps taken to com-
pute the estimated predictive accuracy and predictive accu-
racy probability in a simulation-based analysis by employing
the squared Mahalanobis distance. This evaluation consists
of five steps, with Steps 1 through Step 4 being identical to
the steps presented in Section 5.6.1.

Step 5b: Compute Estimated Predictive Accuracy and
PAP. Compute Estimated Predictive Accuracy and PAP. In
the alternative fifth step, the predictive accuracy of the es-
timated models and the PAP were computed. The estima-
tion of predictive accuracy followed the same procedure out-
lined in Section 5.5.2 (see R code headings "Step 5b: Com-
pute Estimated Predictive Accuracy"), with the exception
that the test and training sets employed in this analysis were
of a larger magnitude than in the empirical analysis. Subse-
quently, the PAP was determined by computing the propor-

tion of generated training sets in which the predictive accu-
racy, represented as pmal, o5, €xceeded the threshold of 0.94
(see R code heading "Step 5b: Compute PAP").

6 Results
6.1 MSPE Evaluation

Table 1 presents a summary of the findings of the MSPE
evaluation for the empirical- and simulated-based analyses.
The findings indicated that MSPE,, was greater across ev-
ery variable for the empirical-based analysis compared to
the simulated-based analysis. In order to assess the signif-
icance of these differences, we analyzed the 95th percentile
of the simulated training sets, as shown in Table 1. These
revealed that the empirical-based MSPE, exceeded the 95th
percentile for the variables negative affect, worry, and sus-
picious; while falling below the 95th percentile for positive
affect and mental unrest. In addition, the empirical-based
MSPE taken across all variables was significantly greater
than the simulation-based outcome. All things considered,
these findings provide support for the hypothesis that the
simulation-based analysis will yield overoptimistic results in
the MSPE evaluation.

Table 1

MSPE Evaluation Results

Simulated Test data

Variable Empirical Mean (SD)  95th
test data Percentile

Average 534 .529 (.001) 531
Positive 797 793 (.003) 798
Affect

Mental .696 .693 (.003)  .698
Unrest

Negative 414 408 (.001) 411
Affect

Worry .520 510 (.002) 514

Suspicious 243 240 (.001) 242

Note. The simulated test data MSPE was averaged across all 1000
training sets. The first row is the average MSPE across variables.
The parentheses refer to the standard deviation across the training
sets.

While the absolute differences shown in Table 1 may ap-
pear small, Figure 3 provides a visual representation of how
these differences can be substantial when viewed within the
context of the overall distribution. As depicted in Figure 3,
the average MSPE and the MSPE,, of negative affect, worry,
and suspicious exhibit a relatively narrow distribution. In
contrast, the distribution of positive affect and mental unrest
occupy a significantly wider range.
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Figure 3

Histograms of the Distribution of MSPE Across Training Sets
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10 EILING

6.2 Mahalanobis Distance Evaluation

Table 2 presents the summarized results of the evaluation
of Mahalanobis distance for the empirical- and simulated-
based analyses. The findings suggest that the average
squared Mahalanobis distance was greater for the empirical-
based analysis compared to the simulation-based analysis
(Di = 0.044). Furthermore, the average estimated predictive
accuracy of the simulation-based analysis was greater than
the outcome for the empirical-based analysis (pmaro5n =
3.587). Notably, this difference surpasses the standard de-
viation calculated across all thousand training sets by more
than 8-fold. It is worth noting that all 1000 estimated pre-
dictive accuracy models ppa 95 surpassed the threshold of
0.94, resulting in a perfect PAP score of 100%. Accord-
ingly, the findings provide support for the hypothesis that the
simulated-based analysis will yield overoptimistic results in
the Mahalanobis evaluation.

Table 2

Mahalanobis Distance Evaluation Results

Type of Average Estimated Predictive
Data D? Predictive Accuracy
Accuracy (%) Probability (%)
Empirical 5.069 91.304 -
Simulated 5.025 (.008) 94.891 (.041) 100

Note. For the simulated data, the D* and estimated predictive ac-
curacy are represented as an average across training sets n (n =
1,...,1000). The parentheses refer to the standard deviation across
the training sets.

Figure 4 depicts the distribution of the predictive accuracy
estimates of the thousand training sets. The distribution of
the predictive accuracy estimates of the simulated scores was
characterized by a narrow range that exceeded the threshold
of 0.94. Reducing the number of timepoints in the VAR(1)
model led to a flattened distribution, characterized by lower
values (see Appendix B). More specifically, the lowest sam-
ple size needed in order for the mean to exceed the threshold
amounted to 150 observations. Additionally, in order to meet
the sufficient PAP criterion of 0.8, approximately 200 obser-
vations were necessary.

7 Discussion

There has been a growing interest in psychological re-
search on quantifying the dynamics of complex processes
over time within individuals using VAR(1) models. To evalu-
ate whether VAR(1) models effectively capture the dynamics
of and generalize to unseen data, predictive accuracy analy-
ses may be performed. Although predictive accuracy analy-

ses based on simulation promise to give indications of over-
fitting, they are unable to detect violations of model assump-
tions. The present study was designed to examine the effect
of model misspecification on predictive accuracy measures.
In line with the hypothesis, it was found that employing sim-
ulated data in a predictive accuracy analysis of a VAR(1)
model estimated from an extensive time-series dataset results
in higher predictive performance compared to using empiri-
cal data. This finding was corroborated by two distinct pre-
dictive accuracy metrics. First, the MSPE, from the empir-
ical analysis was greater than the simulation analysis for all
variables, exceeding the 95th percentile for three of the five
variables. Second, the estimated predictive accuracy for the
simulation far exceeded the PAP threshold, which, in turn,
greatly surpassed the empirical outcome.

7.1 Main Results

The findings from this study highlight two important
points. Firstly, intensive longitudinal psychopathological
datasets have the potential to violate the stationarity assump-
tion, leading to misspecified parameters in VAR(1) models.
Although the assessment of overall stationarity in the uni-
variate time-series yielded mixed findings, temporary depar-
tures from stationarity were found across all variables. These
patterns of non-stationarity are consistent with previous stud-
ies (e.g., Albers & Bringmann, 2020; Cabrieto et al., 2018;
Wichers & Groot, 2016) that identified temporal fluctua-
tions in the dynamics of symptoms in the Peter Groot (2010)
dataset. Indeed, change lies at the core of networks that cap-
ture momentary psychopathological symptoms (Bringmann
et al., 2022). The considerable size of the dataset further
amplifies the potential for non-stationarity, providing an ex-
tended time frame for these changes to manifest. This ex-
tended timeframe enables the identification of various shifts,
such as changes in treatment effectiveness, the influence of
life events, and the development of symptom expression.
This finding challenges the conventional recommendation of
employing a large time-series to prevent overfitting. While
a larger sample size is generally desirable, our study sug-
gests that excessively large sample sizes may negate the ad-
vantages by elevating the risk of obtaining a misspecified
model due to non-stationarity. Thus, when utilizing the time-
invariant VAR(1) model, it is important to strike a balance
and carefully consider the optimal sample size to ensure suf-
ficient power and prevent overfitting, while also taking pre-
cautions to avoid model misspecification’. Additionally, re-
searchers should consider the type of target functions under-
lying the data, as simpler models like AR(1) may be more

"The app developed by Revol et al. (2023) may be a valuable
tool for estimating the minimum number of measurement occasions
necessary to achieve generalizable and robust results in VAR mod-
els with varying characteristics.
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Figure 4

Histogram of the Distribution of Estimated Predictive Accuracy Across Training Sets
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Note. The red line refers to the .94 threshold proposed for puma, 95 by Revol et al. (2023) and the blue line refers to the empirical predictive

accuracy obtained in Section 5.5.2.

appropriate if the target functions are relatively simple (Bul-
teel, Mestdagh, et al., 2018; Lafit et al., 2022).

Secondly, the present study indicates that VAR model mis-
specification is not accurately captured by a simulation-based
PAA. These findings are consistent with the cautious ap-
proach advocated by Revol et al. (2023), who emphasized
that drawing conclusions about the predictive accuracy of
empirical data solely based on simulated PAA is insufficient.
The present study adds to this argument, highlighting the
misleading nature of simulation-based assessments in terms
of generalizability and predictive performance. In line with
Revol et al. (2023), we recommend that researchers inter-
ested in evaluating the generalizability and predictive accu-
racy of VAR(1) models turn to cross-validation procedures®.
The constraints of simulation-based PAA in detecting VAR
assumption violations highlight the challenge of accurately
reproducing the intricate nature of real-world data through
current data-generating procedures. Particularly, the assump-
tion that the multivariate normal distribution accurately rep-
resents the true distribution of innovations in empirical data
may not hold. When the assumed distribution significantly
deviates from the distribution of innovations in the empiri-
cal data, the simulated data may fall short in capturing the
complexities and heterogeneity observed in real-world data.
Accordingly, further investigation and development of sim-
ulation techniques that better emulate the characteristics of
empirical data are warranted to address these concerns.

7.2 Comparison of Predictive Accuracy Metrics

While the empirical analysis yielded lower predictive ac-
curacy performance than the simulated analysis on both met-
rics, the difference was more pronounced when considering
the multivariate squared Mahalanobis distance. Considering
the simulation-based predictive accuracy analysis served as

a benchmark, where stationarity was ensured, these findings
imply that the empirical-based squared Mahalanobis distance
metric outperformed MSPE in identifying violations of VAR
assumptions. This discrepancy could be attributed to a core
theoretical difference between the two metrics alluded to in
Section 4. Namely, in contrast to MSPE, the squared Ma-
halanobis distances are sensitive to disparities in innovations
variances across variables and the influence of innovation co-
variance. As a result, the squared Mahalanobis distances are
better able to consider the complexities and interdependen-
cies inherent in the VAR(1) model. By considering these
factors, this metric promises to be a robust alternative to
MSPE in the realm of multivariate models. Therefore, we
highly recommend utilizing squared Mahalanobis distances
as a metric for conducting predictive accuracy analyses.

However, this conclusion may not hold for datasets with
fewer timepoints. As discussed in Section 4, the distribution
of the squared Mahalanobis distance values should approxi-
mate the y? distribution when the training set is sufficiently
large. In the present study, there were 966 timepoints avail-
able for the analyses, suggesting that the assumption of an
adequately sized training set was likely satisfied. However,
it is crucial to acknowledge that with a smaller dataset, this
distributional assumption may be violated, potentially intro-
ducing additional bias into the estimated VAR model param-
eters. This suggests that the ability of the squared Maha-
lanobis distance to effectively identify assumption violations
over MSPE may be contingent on the availability of a suf-
ficiently large training set. It would be beneficial for future
research to investigate the performance of these metrics on
datasets with varying sample sizes to gain a more compre-
hensive understanding of their generalizability and robust-
ness across different data contexts.

8The application of the LOOCYV is available on the OSF page of
this project.
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7.3 Limitations and Future Directions

This current study is limited by several factors. The first
limitation pertains to the failure to replicate the nodes used
in Wichers and Groot (2016). Namely, for the affect items,
the three components from Wichers and Groot (2016) were
replaced by single variables, which may have affected the au-
toregressive and cross-lagged edges within the VAR(1) net-
work. Collapsing variables into a smaller number of prin-
cipal components or common factors results in a sparser
VAR(1) model that has a reduced dimensional representa-
tion of the contemporaneous correlation structure (Ariens et
al., 2020; Bulteel, Tuerlinckx, et al., 2018). In turn, VAR(1)
networks based on principal components offer the potential
to lower measurement error and enhance generalization to
unseen data (Bulteel, Tuerlinckx, et al., 2018). This implies
that the replacement of components with individual variables
might have had a detrimental impact on the predictive accu-
racy results.

Another limitation arises from the use of listwise dele-
tion to handle missing data. Dealing with missing data is
a common challenge when working with intensive longitu-
dinal data, and the approach we take to address this issue
can significantly impact the quality of our results (Hamaker
et al., 2018; Shin et al., 2009; Yuan et al., 2020). Numerous
studies have demonstrated that estimation methods relying
on listwise deletion cannot be generally recommended when
the missing mechanism deviates from MCAR (Duncan et al.,
1998; Muthén et al., 1987; Newman, 2003; Schafer & Gra-
ham, 2002; Shin et al., 2009). Such approaches can lead to a
loss in efficiency, as well as biases and distortions in the es-
timation of variable interrelations. Even under MCAR con-
ditions, listwise deletion may result in suboptimal efficiency
(Newman, 2003; Schafer & Graham, 2002). The abundance
of missing observations in the dataset suggests that the data
may not conform to the assumption of MCAR, biasing and
invalidating the parameter estimates. Alternative estimation
methods, such as MLE and DSEM (described in Section 2)
handle missing data directly, thereby eliminating the need for
dedicated missing data procedures such as listwise deletion.
In addition, these methods yield more accurate parameter es-
timates and model fit statistics (Shin et al., 2009). In par-
ticular, the Mplus implementation of DSEM holds promise
due to its Bayesian estimation and Markov Chain Monte
Carlo (MCMC) sampling, which capture individual-specific
parameters and account for the autocorrelation structure of
the data. This approach allows for simultaneous considera-
tion of random and nonrandom parameters, potentially en-
hancing the estimation of VAR(1) model parameters and the
predictive accuracy outcomes.

The final limitation of this study lies in the assumption
that the observed predictive accuracy outcomes directly re-
flect the extent of model misspecification and violations of
model assumptions. While this conceptual assumption holds

merit, it is important to acknowledge that the methods em-
ployed in this investigation only indirectly assessed the rela-
tionship between predictive accuracy and model misspecifi-
cation. Consequently, the precise connection between the vi-
olation of specific assumptions, model misspecification, and
the resulting predictive accuracy results remains somewhat
ambiguous. To gain a clearer understanding of this relation-
ship, further research is warranted to explore how the vio-
lation of specific VAR assumptions leads to model misspec-
ification and subsequently impacts predictive accuracy. For
instance, it would be valuable to investigate the magnitude of
bias induced in the VAR parameters by the violation of the
stationarity assumption. And how the biased caused by this
violation alone contributes to the predictive accuracy. Inves-
tigating the other assumptions in a similar manner and exam-
ining the interaction effects would contribute to a more com-
prehensive understanding of the impact of violations of VAR
assumptions on predictive accuracy outcomes. The findings
from such research endeavors could help in the development
of more robust sample size planning approaches.

7.4. Conclusion

In conclusion, our study highlights the potential presence
of non-stationarity in intensive longitudinal psychopatholog-
ical datasets, resulting in biased parameters that do not ac-
curately represent the target function. This finding holds im-
portant implications for the practical application of networks
in clinical practice. Specifically, when VAR(1) models es-
timated from psychopathological data are misspecified, it is
not meaningful to draw inferences from the model parame-
ters and network diagrams. To mitigate the interpretation of
misspecified models, the implementation of empirical-based
cross-validation procedures becomes imperative in assessing
the generalizability and predictive accuracy of future appli-
cations.
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Appendix A
Stationarity Testing

Table A1

Augmented Dickey-Fuller Test Unit Root Test Results

Variable ADF Test-statistic
Positive affect -2.652*F
Mental unrest -4.910*
Negative affect -13.864*

Worry -6.346"
Suspicious -4.477

Note. The test was conducted with the ur.df function of the urca library (Pfaff, 2008) with the type set to ‘none’ and the number of lags set
to 1. At a significance level of 0.05, the critical value was determined to be -1.95.

"

p < .05.

Table A2

Kwiatkowski-Phillips-Schmidt-Shin Test Results
Variable KPSS Test-statistic

Positive affect 255
Mental unrest 5.686"
Negative affect 3.437"
Worry 4.369*
Suspicious 10.388*

Note. The test was conducted with the ur.kpss function of the urca library (Pfaff, 2008) with the type set to ‘mu’ and the number of lags set
to 1. At a significance level of 0.05, the critical value was determined to be 0.574.

*

p < .05.



Figure A1
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The ADF Unit Root Test-Statistics Over Time With Rolling Windows of 50 Timepoints
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Figure A2

The KPSS Unit Root Test-Statistics Over Time With Rolling Windows of 50 Timepoints
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Relationship between Training Set Size and Estimated Predictive Accuracy
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